\qquad

There are 6 questions, 6 pages, and 150 points on this test.
No calculators, No books, No notes, Ask for scrap paper if you need it, \cdots Exam ends at $5: 30 \mathrm{p}$.
Notation: unit disk: $\mathbb{D}=\{z:|z|<1\}$ and upper half plane: $H_{+}=\{z: \operatorname{Im}(z)>0\}$
(25 points)

1. Find all linear fractional maps, φ, that map the upper half plane H_{+}onto itself
and satisfy $\lim _{z \rightarrow \infty} \varphi(z)=\infty . \quad$ Provide a step by step justification for your answer!
Are there any φ as above such that $\varphi(3+i)=-2+4 i$? If so, find all such φ.
(25 points) 2. Suppose g is an analytic function on \mathbb{D} and $g(\mathbb{D}) \subset \mathbb{D}$.
Prove: If a and b, with $a \neq b$, are points of \mathbb{D} such that $g(a)=a$ and $g(b)=b$, then $g(z)=z$ for every z in the disk.
(25 points)
2. Evaluate $\int_{0}^{\infty} \frac{\sqrt{x}}{1+x^{2}} d x$ by using contour integration on boundary of the set:

$$
\left\{z=r e^{i \theta}: \epsilon<r<R \text { and } 0<\theta<\pi\right\}
$$

(25 points)
4. The function f is holomorphic on the connected open set Ω in the complex plane and there is no connected open set $\Omega_{1} \supset \Omega$ with $\Omega_{1} \neq \Omega$ on which there is g holomorphic on Ω_{1} and $g(z)=f(z)$ for z in Ω. In other words, Ω is a maximal domain on which f is holomorphic.
For those z in Ω for which the power series converges, $f(z)=\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}(z+1+i)^{n}$
(a) What is the largest open set on which this power series converges?
(b) Does Ω contain the set on which the power series converges, that is, is f holomorphic on the set on which the power series converges? If so, cite some theorem that shows that is the case. If not, explain why not.
(c) Does f^{\prime} have a power series on some part of Ω ? If so, cite some theorem that shows that is the case and, if you can, find such a power series for f^{\prime}. If not, explain why not.
(d) What is the largest set on which you can be sure f is holomorphic, and explain your answer.
(25 points) 5. Let $\sqrt{\cdot}$ denote the branch of the square root function defined on $\mathbb{C} \backslash(-\infty, 0]$ and satisfying $\sqrt{4}=2$. Let $\varphi(z)=\frac{1+z}{1-z}$ and, finally, let $f(z)=\frac{\sqrt{\varphi(z)}-1}{\sqrt{\varphi(z)}+1}$
Note: It is true, and you do NOT need to prove it, that f is holomorphic on the unit disk, \mathbb{D},
that f has a continuous extension to the closed disk, and that f is one-to-one on the closed disk.
"Estimate" means you do not have to justify your answer!!
(a) Describe the set $\Omega=f(\mathbb{D})$.
(b) For $r>0$ and ζ, with $|\zeta|=1$, let $\Delta(\zeta, r)=\{w:|w-f(\zeta)|<r\}$, the disk of radius r, center $f(\zeta)$.

In order to highlight some features of Ω, for each ζ with $|\zeta|=1$, estimate $\lim _{r \rightarrow 0^{+}} \frac{\operatorname{area}(\Omega \cap \Delta(\zeta, r))}{\operatorname{area}(\Delta(\zeta, r))}$
(25 points) 6. For each positive integer n, let P_{n} be the polynomial $P_{n}(z)=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots+\frac{z^{n}}{n!}$
Prove that for any $R>0$,
there is N so that $n>N$ implies the polynomial P_{n} has exactly n zeros in $\{z:|z|>R\}$.

