Math 53000

Final Exam

There are 6 questions, 6 pages, and 150 points on this test.

No calculators, No books, No notes, Ask for scrap paper if you need it, \cdots Exam ends at 5:30p.

Notation: unit disk: $\mathbb{D} = \{z : |z| < 1\}$ and upper half plane: $H_+ = \{z : \text{Im}(z) > 0\}$

(25 points) 1. Find all linear fractional maps, φ , that map the upper half plane H_+ onto itself

and satisfy $\lim_{z \to \infty} \varphi(z) = \infty$. Provide a step by step justification for your answer!

Are there any φ as above such that $\varphi(3+i) = -2 + 4i$? If so, find all such φ .

(25 points) 2. Suppose g is an analytic function on \mathbb{D} and $g(\mathbb{D}) \subset \mathbb{D}$.

Prove: If a and b, with $a \neq b$, are points of \mathbb{D} such that g(a) = a and g(b) = b, then g(z) = z for every z in the disk.

(25 points) 3. Evaluate $\int_0^\infty \frac{\sqrt{x}}{1+x^2} dx$ by using contour integration on boundary of the set: $\{z = re^{i\theta} : \epsilon < r < R \text{ and } 0 < \theta < \pi\}$

(25 points) 4. The function f is holomorphic on the connected open set Ω in the complex plane and there is no connected open set $\Omega_1 \supset \Omega$ with $\Omega_1 \neq \Omega$ on which there is g holomorphic on Ω_1 and g(z) = f(z) for z in Ω . In other words, Ω is a maximal domain on which f is holomorphic.

For those z in Ω for which the power series converges, $f(z) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} (z+1+i)^n$

- (a) What is the largest open set on which this power series converges?
- (b) Does Ω contain the set on which the power series converges, that is, is f holomorphic on the set on which the power series converges? If so, cite some theorem that shows that is the case. If not, explain why not.
- (c) Does f' have a power series on some part of Ω ? If so, cite some theorem that shows that is the case and, if you can, find such a power series for f'. If not, explain why not.
- (d) What is the largest set on which you can be sure f is holomorphic, and explain your answer.

(25 points) 5. Let $\sqrt{\cdot}$ denote the branch of the square root function defined on $\mathbb{C} \setminus (-\infty, 0]$ and satisfying $\sqrt{4} = 2$.

Let
$$\varphi(z) = \frac{1+z}{1-z}$$
 and, finally, let $f(z) = \frac{\sqrt{\varphi(z)}-1}{\sqrt{\varphi(z)}+1}$

Note: It is true, and you do NOT need to prove it, that f is holomorphic on the unit disk, \mathbb{D} , that f has a continuous extension to the closed disk, and that f is one-to-one on the closed disk.

"Estimate" means you do not have to justify your answer!!

- (a) Describe the set $\Omega = f(\mathbb{D})$.
- (b) For r > 0 and ζ , with $|\zeta| = 1$, let $\Delta(\zeta, r) = \{w : |w f(\zeta)| < r\}$, the disk of radius r, center $f(\zeta)$.

In order to highlight some features of Ω , for each ζ with $|\zeta| = 1$, estimate $\lim_{r \to 0^+} \frac{\operatorname{area}(\Omega \cap \Delta(\zeta, r))}{\operatorname{area}(\Delta(\zeta, r))}$

(25 points) 6. For each positive integer n, let P_n be the polynomial $P_n(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!}$ Prove that for any R > 0,

there is N so that n > N implies the polynomial P_n has exactly n zeros in $\{z : |z| > R\}$.