Exercises 1.2

- 1. Let u = (1, -1, 3), v = (0, 2, -1), and w = (3, 1, 1). Evaluate the following expressions: (a) 4u (b) -3v (c) u + w (d) 4u - 3v (e) 2u - 4v + 3w
- 2. Let u = (2, 1, 0, -3), v = (1, 0, 3, -1), w = (2, 0, 6, -2), and x = (1, -2, 1). Evaluate the following expressions when possible; say *Undefined* when the arithmetic in the expression cannot be carried out.

(a) 3u - 2v (b) 2u + v - 3w (c) 3x + w (d) $\alpha u + \beta v + \gamma w$

- 3. Let u, v, and w be vectors as in the previous problem.
 - (a) Find α and β so that $\alpha u + \beta v = (1, 2, -9, -3)$.
 - (b) Find γ and δ so that $\gamma u + \delta w = (3, -1, 2, 0)$.
 - (c) Find ϵ and ζ so that $\epsilon v + \zeta w = (-1, 0, -3, 1)$.
- 4. Let $A = \begin{pmatrix} 5 & -4 & 1 \\ 12 & -11 & 6 \\ 10 & -10 & 8 \end{pmatrix}$ and $u = (1, -1, 2), v = (1, 1, 0), w = (1, 2, 1), e_1 = (1, 0, 0), and e_2 = (0, 1, 0).$ (a) Find Au.
 - (b) Find Av.
 - (c) Find Aw.

(d) Find Ae_1 and Ae_2 . Let $e_3 = (0, 0, 1)$; guess what Ae_3 is, then compute it.

5. Let
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$$
 and $N = \begin{pmatrix} -1 & 0 & 4 \\ 1 & 1 & -2 \end{pmatrix}$. Evaluate the following expressions.
(a) $3M$ (b) $-2N$ (c) $M + N$ (d) $3M - 2N$ (e) M'
(f) N' (g) $(3M - 2N)'$ (h) MM' (i) $M'M$ (j) MN'

- 6. Let $S = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 1 & 3 \\ -1 & 3 & -2 \end{pmatrix}$. (a) Find S'.
 - (b) What special property does S have?
 - (c) What is S + I. How do you know which identity matrix to add to S?
 - (d) Find S^2 and S^3 .
 - (e) Show that if T is any Hermitian matrix, then T^2 is Hermitian also.

7. Let
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 0 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -3 \\ -1 & 3 \\ -1 & 3 \end{pmatrix}$,

 $D = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, and $E = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$. Evaluate the following expressions when possible; say

Undefined when the arithmetic in the expression cannot be carried out.

(a)
$$3A - 2B$$
 (b) AE (c) AB (d) AC (e) CA
(f) EA (g) $E'A$ (h) $AB' + D$ (i) A^2 (j) D^2

8. Let
$$P = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -2 \\ 5 & 3 & -5 \end{pmatrix}$, and let D be the diagonal matrix $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
(a) Find DP and DQ .

- (b) If E is the diagonal matrix with diagonal entries α , β , and γ , and R is a matrix, describe ER.
- (c) Find PD and QD.
- (d) If E is the diagonal matrix with diagonal entries α , β , and γ , and R is a matrix, describe RE.

9. Let
$$S = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$
 and let $T = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & -2 \end{pmatrix}$.
Let $C_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, let $C_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, and let $C_3 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.
(a) Find SC_1 , SC_2 , and SC_3 .

(b) Find ST and compare your answer with the results of part a).

10. (a) Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 2 \\ 2 & -1 & 1 \end{pmatrix}$$
 and let $B = \begin{pmatrix} -4 & -1 & 2 \\ -5 & -1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$.
Explain why $A = B^{-1}$.

(b) Is $B = A^{-1}$? Explain!

(c) Let
$$C = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$
, and $D = \begin{pmatrix} -2 & 1 \\ -3 & 1 \\ 1 & 1 \end{pmatrix}$. Is $D = C^{-1}$? Explain!

11. Let $E = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$. Find a matrix $F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ so that $F = E^{-1}$.

12. (a) Show that if G is an invertible matrix, then G' is also invertible and $(G')^{-1} = (G^{-1})'$. (b) Use your answer to part (a) and problem 10 above to find the inverse of $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & -1 \\ 0 & 2 & 1 \end{pmatrix}$.

13. Verify that if N is a matrix such that $N^4 = 0$, then

$$(I - N)^{-1} = I + N + N^2 + N^3.$$

WARNING! Such matrices are called *nilpotent* and are **not** necessarily 0.

For example, the matrix
$$M = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
 satisfies $M^2 = 0$.

- 14. Let E be an $m \times n$ matrix.
 - (a) Show that EE' and E'E are both Hermitian.
 - (b) Give an example to show that these are not always the same.
 - (c) Show that if E is square, then E + E' is Hermitian.
- 15. Redo Exercises 7, 10, and 11 using a suitable machine. How does your machine react to undefined matrix operations?

16.

$$F = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3 \\ 4 & 2.6 & 0 & 3 \\ 3 & -.3 & 8 & 1.5 \end{pmatrix}$$

- (a) Use a suitable machine to find $G = F^{-1}$
- (b) Find the computed values of GF and GF I. Explain the output of your machine.

Exercises 1.3

1. Let
$$A = \begin{pmatrix} 4 & 3 & -2 \\ 2 & -5 & 6 \end{pmatrix}$$
 and let $B = \begin{pmatrix} 0 & -1 & 3 \\ 2 & -1 & 6 \\ 5 & 2 & 1 \end{pmatrix}$

(a) Find AB (from the definition) as a 2×3 matrix.

- (b) Partition A as $\begin{pmatrix} A_{11} | A_{12} \end{pmatrix}$ and B as $\begin{pmatrix} B_{11} | B_{12} \\ B_{21} | B_{22} \end{pmatrix}$, where both A_{11} and B_{11} are 2 × 2 matrices, that is, say what each of $A_{11}, A_{12}, \dots, B_{22}$ are.
- (c) Determine each of the relevant products from (b) above and find AB as a partitioned matrix.
- 2. Use partitioned matrices to show that if A is an $m \times n$ matrix and B is an $n \times p$ matrix whose k^{th} column is zero, then the k^{th} column of AB is zero.
- 3. Explore how your software handles block matrices.
 - (a) Enter the matrices

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}$$
$$C = \begin{pmatrix} 4 & 2.6 & 0 \\ 3 & -.3 & 8 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & -2 \\ 1.5 & 4 \end{pmatrix}$$

(b) Make a 4×5 matrix E from the matrices A, B, C, and D to get

$$E = \begin{pmatrix} 1 & 2 & -1 & 1 & -1 \\ 0 & -1 & 4 & 3 & 1 \\ \hline 4 & 2.6 & 0 & 3 & -2 \\ 3 & -.3 & 8 & 1.5 & 4 \end{pmatrix}$$

You probably do not need to retype all the entries! Note that $E = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

- (c) Make a 4×4 matrix F from E by deleting its last column $F = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3 \\ 4 & 2.6 & 0 & 3 \\ 3 & -.3 & 8 & 1.5 \end{pmatrix}$
- 4. Prove: If a matrix is multiplied on the right by a diagonal matrix, the j^{th} column of the product is the j^{th} diagonal entry times the the j^{th} column of the original matrix. (Compare with Exercise 8)
- 5. Suppose A is a square matrix partitioned as

$$A = \left(\begin{array}{c|c} X & Y \\ \hline 0 & Z \end{array}\right)$$

where X and Z are square invertible matrices and 0 is a zero matrix.

(a) Find formulas for P, Q, R, and S so that the block matrix

$$\left(\begin{array}{c|c} P & Q \\ \hline R & S \end{array}\right)$$

is A^{-1} . (*Caution:* matrix multiplication is not commutative!) If you are successful, you will have shown that matrices with the given block form are invertible. Use your formula to find A^{-1} when $X = \begin{pmatrix} -1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & -1 \end{pmatrix}$.

b) Use your formula to find
$$A^{-1}$$
 when $X = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$
and $Z = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ (Note that $Z^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$)

$$1. \begin{cases} w = 5 \\ 2w + x = 2 \\ w + x + y = -1 \\ w - x + 2y + z = 4 \end{cases}$$

$$3. \begin{cases} 2w - x + 2y + z = 1 \\ x + y - z = -2 \\ 3y + z = 0 \\ 2z = 6 \end{cases}$$

$$2. \begin{cases} a + 2b + c = 2 \\ -a + 3b - c + d = 3 \\ a = 4 \\ 2a + b = -1 \end{cases}$$

$$4. \begin{cases} 2w - x + 2y + z = 0 \\ x + y - z = 0 \\ y - z = 0 \end{cases}$$
(Hint: solve for w, x, and y in terms of z. There will be infinitely many solutions, one for each value of z.)

5. Write each system in Problems 6–9 as a matrix equation.

Use your software to solve the following systems. Be sure to check your answers!

$$6. \begin{cases} x+2y = 3\\ 3x+4y = -2 \end{cases}$$

$$8. \begin{cases} w - y+2z = 0\\ -w+x+3y-z = 5\\ 2w +5z = 3\\ w+x+y+2z = 4 \end{cases}$$

$$7. \begin{cases} x-y+z = 1\\ -x+3y+3z = 5\\ 2x +3z = 4 \end{cases}$$

$$9. \begin{cases} 2w+3x+y-z = 1\\ -w+2x+3y+z = -1\\ 2w+x-2y+3z = 0\\ w-x+y+2z = 2 \end{cases}$$

10. The five-tuples (2, 2, 1, -1, 1) and (1, 1, 2, -1, -1) are both solutions of the system:

$$\begin{cases} a+b+4c+d+e = 8\\ a-b+2c+2d+e = 1\\ 2a+b-c-d-2e = 4\\ b+3c+d+e = 5\\ 2a-b+c+3d = 0 \end{cases}$$

- (a) Without using Gaussian elimination or a machine, write down two non-trivial solutions of the associated homogeneous system.
- (b) Write down two other solutions of the given system.
- 11. Let A be the matrix

and let b = (3, -1, 3, 2) and let c = (0, 4, -4, 4).

- (a) Check that Y = (1, 1, 1, 1) solves the system AX = b and that Z = (1, 0, -1, 1) solves the system AX = c.
- (b) Without using Gaussian Elimination or a machine, find a solution of the system AX = (6, -2, 6, 4) = 2b.
- (c) Without using Gaussian Elimination or a machine, find a solution of the system AX = (3, 3, -1, 6) = b + c.
- (d) Without using Gaussian Elimination or a machine, find a solution of the system AX = (9, 5, 1, 14) = 3b + 2c.