Exercises 1.3

1. Let $A=\left(\begin{array}{rrr}4 & 3 & -2 \\ 2 & -5 & 6\end{array}\right)$ and let $B=\left(\begin{array}{rrr}0 & -1 & 3 \\ 2 & -1 & 6 \\ 5 & 2 & 1\end{array}\right)$.
(a) Find $A B$ (from the definition) as a 2×3 matrix.
(b) Partition A as $\left(A_{11} \mid A_{12}\right)$ and B as $\left(\begin{array}{l|l}B_{11} & B_{12} \\ \hline B_{21} & B_{22}\end{array}\right)$, where both A_{11} and B_{11} are 2×2 matrices, that is, say what each of $A_{11}, A_{12}, \cdots, B_{22}$ are.
(c) Determine each of the relevant products from (b) above and find $A B$ as a partitioned matrix.
2. Use partitioned matrices to show that if A is an $m \times n$ matrix and B is an $n \times p$ matrix whose $k^{\text {th }}$ column is zero, then the $k^{\text {th }}$ column of $A B$ is zero.
3. Explore how your software handles block matrices.
(a) Enter the matrices

$$
\begin{array}{ll}
A=\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & -1 & 4
\end{array}\right), & B=\left(\begin{array}{rr}
1 & -1 \\
3 & 1
\end{array}\right) \\
C=\left(\begin{array}{rrr}
4 & 2.6 & 0 \\
3 & -.3 & 8
\end{array}\right), & D=\left(\begin{array}{rr}
3 & -2 \\
1.5 & 4
\end{array}\right)
\end{array}
$$

(b) Make a 4×5 matrix E from the matrices A, B, C, and D to get

$$
E=\left(\begin{array}{rrr|rr}
1 & 2 & -1 & 1 & -1 \\
0 & -1 & 4 & 3 & 1 \\
\hline 4 & 2.6 & 0 & 3 & -2 \\
3 & -.3 & 8 & 1.5 & 4
\end{array}\right)
$$

You probably do not need to retype all the entries! Note that $E=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$
(c) Make a 4×4 matrix F from E by deleting its last column $F=\left(\begin{array}{rrrr}1 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3 \\ 4 & 2.6 & 0 & 3 \\ 3 & -.3 & 8 & 1.5\end{array}\right)$
4. Prove: If a matrix is multiplied on the right by a diagonal matrix, the $j^{t h}$ column of the product is the $j^{t h}$ diagonal entry times the the $j^{t h}$ column of the original matrix. (Compare with Exercise ??)
5. Suppose A is a square matrix partitioned as

$$
A=\left(\begin{array}{c|c}
X & Y \\
\hline 0 & Z
\end{array}\right)
$$

where X and Z are square invertible matrices and 0 is a zero matrix.
(a) Find formulas for P, Q, R, and S so that the block matrix

$$
\left(\begin{array}{c|c}
P & Q \\
\hline R & S
\end{array}\right)
$$

is A^{-1}. (Caution: matrix multiplication is not commutative!) If you are successful, you will have shown that matrices with the given block form are invertible.
(b) Use your formula to find A^{-1} when $X=(-1), Y=\left(\begin{array}{ll}1 & -1\end{array}\right)$, and $Z=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right) \quad$ (Note that $Z^{-1}=\left(\begin{array}{rr}3 & -1 \\ -2 & 1\end{array}\right)$)

Exercises 2.1

(Hint: solve for w, x, and y in terms of z. There will be infinitely many solutions, one for each value of z.)
5. Write each system in Problems 6-9 as a matrix equation.

Use your software to solve the following systems. Be sure to check your answers!
6. $\left\{\begin{aligned} x+2 y & =3 \\ 3 x+4 y & =-2\end{aligned}\right.$
8. $\left\{\begin{array}{r}w-y+2 z=0 \\ -w+x+3 y-z=5 \\ 2 w+5 z=3 \\ w+x+y+2 z=4\end{array}\right.$
7. $\left\{\begin{aligned} x-y+z & =1 \\ -x+3 y+3 z & =5 \\ 2 x+3 z & =4\end{aligned}\right.$
9. $\left\{\begin{aligned} 2 w+3 x+y-z & =1 \\ -w+2 x+3 y+z & = \\ 2 w+x-2 y+3 z & =0 \\ w-x+y+2 z & =2\end{aligned}\right.$
10. The five-tuples $(2,2,1,-1,1)$ and $(1,1,2,-1,-1)$ are both solutions of the system:

$$
\left\{\begin{aligned}
a+b+4 c+d+e & =8 \\
a-b+2 c+2 d+e & =1 \\
2 a+b-c-d-2 e & =4 \\
b+3 c+d+e & =5 \\
2 a-b+c+3 d & =0
\end{aligned}\right.
$$

(a) Without using Gaussian elimination or a machine, write down two non-trivial solutions of the associated homogeneous system.
(b) Write down two other solutions of the given system.
11. Let A be the matrix

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
2 & 1 & -3 & -1 \\
1 & 1 & 3 & -2 \\
-1 & 2 & -2 & 3
\end{array}\right)
$$

and let $b=(3,-1,3,2)$ and let $c=(0,4,-4,4)$.
(a) Check that $Y=(1,1,1,1)$ solves the system $A X=b$ and that $Z=(1,0,-1,1)$ solves the system $A X=c$.
(b) Without using Gaussian Elimination or a machine, find a solution of the system $A X=$ $(6,-2,6,4)=2 b$.
(c) Without using Gaussian Elimination or a machine, find a solution of the system $A X=$ $(3,3,-1,6)=b+c$.
(d) Without using Gaussian Elimination or a machine, find a solution of the system $A X=$ $(9,5,1,14)=3 b+2 c$.

