## Constrained Maxima and Minima

1. Let $K=\left\{\binom{x}{y}: x^{2}+2 y \leq 5\right.$ and $\left.y \geq-1\right\}$ and let $f\binom{x}{y}=2 x^{2}-2 x y+y^{2}-4 x+2 y$.

Find the maximum and minimum values of $f$ on $K$ and the points at which these values occur.
2. Let $L=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x^{2}+4 y^{2}+z^{2}+6 z \leq 31\right\}$ and let $F\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=2 x+4 y^{2}+4 z$.

Find the maximum and minimum values of $F$ on $L$ and the points at which these values occur.

## Section 4.1 of text

3. Exercise 4.1.1 (page 406 (404)).
4. Let $f(x)=\left\{\begin{array}{cl}0 & x \leq 1 \\ x-1 \\ 2 & 1<x<3 \\ 3 & \leq x\end{array} \quad\right.$ and let $g(x)=f(x) f(10-x)$.
(a) Graph the functions $f$ and $g$.
(b) Is $f$ continuous on $\mathbb{R}$ ? Is $g$ continuous on $\mathbb{R}$ ?
(c) Find the support of $f$. Is the support of $f$ a bounded set?
(d) Find the support of $g$. Is the support of $g$ a bounded set?
5. Let $A=\left\{\binom{x}{y}: x^{2}-4 x+y^{2} \leq 0\right\}$ and let $\mathbf{1}_{A}$ be the characteristic function of $A$ in $\mathbb{R}^{2}$.
(a) Consider the " $0^{\text {th }}$ dyadic paving" of $\mathbb{R}^{2}$ defined in the text. Which of the "dyadic cubes" in this paving has non-empty intersection with $A$ ?
(b) How many of the cubes in the $1^{\text {st }}$ dyadic paving of $\mathbb{R}^{2}$ intersect $A$.
(c) Find the $0^{\text {th }}$ upper sum, $U_{0}\left(\mathbf{1}_{A}\right)$ and the $0^{t h}$ lower sum $L_{0}\left(\mathbf{1}_{A}\right)$.
(d) We will see that $A$ is a "pavable set" in the language of the text.

$$
\text { What is } \int_{\mathbb{R}^{2}} \mathbf{1}_{A}\left|d^{2} x\right| \text { ? }
$$

