Some Basic Curves and Surfaces

Lines A line can be described in two basic ways, as the intersection of two planes or in a parametric form. Both of these ways were described in Math 261, or other multivariable calculus course you have had, but this is a review of the parametric form. If $p = (p_1, p_2, p_3)$ and $q = (q_1, q_2, q_3)$ are two points in \mathbb{R}^3 , then a parametric representation of the line passing through them is

$$\gamma(t) = \begin{pmatrix} tp_1 + (1-t)q_1 \\ tp_2 + (1-t)q_2 \\ tp_3 + (1-t)q_3 \end{pmatrix} = q + t(p-q) \quad \text{for} \quad -\infty < t < \infty$$

Notice that $0 \le t \le 1$ parametrizes the part of the line that is the line segment with end points q and p.

Cones A *cone* is a set in which there is a distinguished point in the set called the *vertex* and each other point of the set is contained in the line passing through that point and the vertex, and the set contains this entire line. For example, the set \mathbf{K} parametrized by

$$\gamma \begin{pmatrix} t \\ \theta \end{pmatrix} = \begin{pmatrix} t \cos \theta \\ t \sin \theta \\ t \end{pmatrix} \quad \text{for} \quad -\infty < t < \infty \quad \text{and} \quad 0 \le \theta < 2\pi$$

is a cone. In particular, because **K** contains each of the circles $(t \cos(\theta), t \sin(\theta), t)$ which lie in the parallel planes z = t and the line joining their centers (in this case, the z-axis) is perpendicular to each of these planes, **K** is called a *right circular cone*. The point (0, 0, 0) is the vertex. The point (.6, -.8, 1) is on the cone, and the entire line through that point and the vertex, (0, 0, 0), is on the cone as well.

Torus A *torus* is a set that is a smooth version of the surface of a donut or a bagel. For example, the set \mathbf{T} parametrized by

$$\gamma \left(\begin{array}{c} \theta\\ \phi \end{array}\right) = \left(\begin{array}{c} (2+\cos\phi)\cos\theta\\ (2+\cos\phi)\sin\theta\\ \sin\phi \end{array}\right) \quad \text{for } 0 \le \theta < 2\pi \text{ and } 0 \le \phi < 2\pi$$

is a torus.

1. Let *F* be defined by
$$F\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 2x - 3y + z + 3\\ x + 2y - 2z - 3 \end{pmatrix}$$

and let L be the curve (line) defined by F = 0 (which is the intersection of two planes).

- (a) Use the implicit function theorem to show that L is a smooth 1-manifold.
- (b) Find a parametric representation for L.

2. Let
$$\gamma$$
 be defined by $\gamma(t) = \begin{pmatrix} 2t+4\\ -3t+2\\ t-3 \end{pmatrix}$

- (a) Use the definition of "Parametrization of a manifold" (3.1.18 or 3.1.19) to show that γ gives a parametrization of a smooth 1-manifold (line) M.
- (b) Find a function G, as in 1. above, that gives M as the intersection of two planes. If you can, find G so that one of the planes is parallel to the z-axis (i.e. does not intersect the z-axis) and the other is parallel to the y-axis.

- **3.** Let **K** be the right circular cone defined above.
 - (a) Use the definition of "Parametrization of a manifold" to show that for each point of $\mathbf{K} \setminus \{0\}$, there is an open set U in \mathbb{R}^2 so that for (t, θ) in this open set, γ (or a slight modification of γ) gives a parametrization of a part of \mathbf{K} containing that point so you have shown $\mathbf{K} \setminus \{0\}$ is a smooth 2-manifold.
 - (b) Find a function f so that f(x, y, z) = 0 determines the set **K** and use the implicit function theorem to show that $\mathbf{K} \setminus \{0\}$ is a smooth 2-manifold. What happens at the origin?
- 4. Let **T** be the torus defined above.
 - (a) Use the definition of "Parametrization of a manifold" to show that for each point of \mathbf{T} , there is an open set U in \mathbb{R}^2 so that for (θ, ϕ) in this open set, γ (or a slight modification of γ) gives a parametrization of a part of \mathbf{T} containing that point so you have shown \mathbf{T} is a smooth 2-manifold.
 - (b) Show that each plane containing the z-axis intersects the torus **T** in two circles. What are the radii of these circles? What is the distance from the centers of each of the circles to the z-axis?
 - (c) Show that the centers of these circles (which are not on **T** but inside of it) all lie on a circle that is a sort of circular 'axis' of the torus. Describe this circle, including the center, radius, and the plane containing it.
- 5. Let S be the set parametrized by the function γ defined by

$$\gamma \begin{pmatrix} \theta \\ \phi \end{pmatrix} = \begin{pmatrix} 3\cos\theta\cos\phi + 2 \\ 3\sin\theta\cos\phi + 1 \\ 3\sin\phi - 2 \end{pmatrix} \quad \text{for } 0 \le \theta < 2\pi \text{ and } 0 \le \phi < \pi$$

- (a) Use the definition of "Parametrization of a manifold" to show that for each point of \mathbf{S} , there is an open set U in \mathbb{R}^2 so that for (θ, ϕ) in this open set, γ (or a slight modification of γ) gives a parametrization of a part of \mathbf{S} containing that point so you have shown \mathbf{S} is a smooth 2-manifold.
- (b) Find a function F that describes **S** as the set of points for which F = 0, and identify **S** as a sphere. What are the center and radius of **S**?
- 6. The point (-1.68, 2.24, .6) is on the torus **T** defined above; it corresponds to the angle θ in the second quadrant with $\sin \theta = .8$ and ϕ in the first quadrant with $\sin \phi = .6$. Find an equation for the plane tangent to the torus at that point.