The Implicit Function Theorem (c.f. 2.10.10 and 2.10.13)

Let U be an open set in \mathbb{R}^{n+m} and let $F: U \mapsto \mathbb{R}^{n}$ be a continuously differentiable function from U into \mathbb{R}^{n}. If c is a point of U such that $F(c)=0$ and such that $(D F)(c)$ maps \mathbb{R}^{n+m} onto \mathbb{R}^{n}, that is, such that $(D F)(c)$ has rank n, then in a neighborhood of $c, F(x)=0$ determines n of the $n+m$ variables in terms of the other m variables. In particular, if the columns of $(D F)(c)$ corresponding to $x_{1}, x_{2}, \cdots, x_{n}$ are linearly independent, then in some neighborhood of $\hat{c}=\left(c_{n+1}, c_{n+2}, \cdots, c_{m+n}\right)$, there are continuously differentiable functions $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ of $x_{n+1}, x_{n+2}, \cdots, x_{n+m}$ such that

$$
F\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}, x_{n+1}, x_{n+2}, \cdots, x_{m+n}\right)=0
$$

and for which

$$
\frac{\partial\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}\right)}{\partial\left(x_{n+1}, x_{n+2}, \cdots, x_{m+n}\right)}=-L_{n}^{-1} L_{m}
$$

where $(D F)(x)=L=\left(L_{n} L_{m}\right)$, that is, L_{n} is the $n \times n$ matrix consisting of the first n columns of $L=(D F)(x)$ and L_{m} is the $n \times m$ matrix consisting of the last m columns of L.

The classic example from Freshman calculus is that of the unit circle $x^{2}+y^{2}=1$ in \mathbb{R}^{2} determining y as a function of x in the upper and lower semi-circles, or x as a function of y in the right and left semicircles. We can write $F(x, y)=x^{2}+y^{2}-1$, so that the circle becomes the set $F(x, y)=0$. This function has $(D F)(x, y)=(2 x 2 y)$ and this Jacobian matrix has rank 1 at each point of \mathbb{R}^{2} except $(0,0)$ which is not on the circle. Then, near the point $c=(.6,-.8)$ which satisfies $F(c)=0,(D F)(c)=(1.2,-1.6)$ has rank 1 , and the first 1 column is linearly independent, so we can write x as a continuously differentiable function of y in a neighborhood of $\hat{c}=-.8$. In this case, $x(y)=\varphi_{1}(y)=\sqrt{1-y^{2}}$. As the Theorem says, $F\left(\varphi_{1}(y), y\right)=0$ and

$$
\frac{d \varphi_{1}}{d y}=-\left(\frac{\partial F}{\partial x}\right)^{-1}\left(\frac{\partial F}{\partial y}\right)=-(2 x)^{-1}(2 y)=-\frac{y}{x}=-\frac{y}{\sqrt{1-y^{2}}}
$$

Notice that the second column of $(D F)(c)$ is also linearly independent, so we can also find y as a function of x for x near .6. Rewriting F as $G(y, x)=x^{2}+y^{2}-1$, where we are putting y in the first position to agree with the Hubbards' notation in the statement of the Theorem, we have $(D G)(y, x)=(2 y 2 x)$ and $y(x)=\psi_{1}(x)=-\sqrt{1-x^{2}}$ is continuously differentiable in a neighborhood of $x=.6$. As the Theorem says, $G\left(\psi_{1}(x), x\right)=0$ and

$$
\frac{d \psi_{1}}{d x}=-\left(\frac{\partial G}{\partial y}\right)^{-1}\left(\frac{\partial G}{\partial x}\right)=-(2 y)^{-1}(2 x)=-\frac{x}{y}=\frac{x}{\sqrt{1-x^{2}}}
$$

Finally, notice that at the four points $(\pm 1,0)$ and $(0, \pm 1)$ on the circle, because the Jacobian $(D F)(x, y)$ is (± 20) or (0 ± 2) which are rank 1 , but with only one of the columns linearly independent, the Theorem does not guarantee that each variable can be written, nearby, as a function of the other, and, indeed, they cannot.

1. Show there are functions $w=\varphi_{1}(y, z)$ and $x=\varphi_{2}(y, z)$ that satisfy $F\left(\varphi_{1}, \varphi_{2}, y, z\right)=0$ and find their derivatives for $F(w, x, y, z)=\binom{3 w+2 x-y+3 z-2}{2 w+x+5 y-2 z-3}$ near $c=(0,0,1,1)$.
2. Show there is a function $z=\varphi_{1}(x, y)$ satisfying $F\left(\varphi_{1}, x, y\right)=0$ and find its derivative for the hyperboloid of two sheets determined by $F(z, x, y)=x^{2}-6 x+y^{2}+4 y-z^{2}+8 z$ near $c=(0,0,0)$.
3. Show there are functions $x=\varphi_{1}(z)$ and $y=\varphi_{2}(z)$ satisfying $F\left(\varphi_{1}, \varphi_{2}, z\right)=(0,0)$ and find their derivatives for the 'tennis ball curve' determined by $F(x, y, z)=\binom{x^{2}+y^{2}+z^{2}-14}{x^{2}-y^{2}-z}$ near $c=(2,-1,3)$.
