Metric Spaces

- **Definition:** A metric space is a pair (X, d) where X is a non-empty set and $d: X \times X \mapsto [0, \infty)$ satisfies d(x, x) = 0 for all x in X, d(x, y) = d(y, x) > 0 for $x \neq y$ in X, and $d(x, z) \leq d(x, y) + d(y, z)$ for x, y, and z in X.
- **Definition:** In a metric space (X, d), $U \subset X$ is an open set if $U = \emptyset$ or for each x in U, there is $\epsilon > 0$ such that $\{y \in X : d(x, y) < \delta\} \subset U$. A set $F \subset X$ is called *closed* if $X \setminus F$ is an open set in X.
- **Definition:** We say a sequence (x_n) in X, a metric space, converges to y if for each $\epsilon > 0$, there is N so that n > N implies $d(x_n, y) < \epsilon$.
- **Theorem:** If F is a subset of X, a metric space, then F is closed if and only if for every convergent sequence (x_n) of points in F, say $\lim_{n\to\infty} x_n = y$, then y is in F, also.
- **Definition:** We say the sequence (x_n) in X, a metric space, is a Cauchy sequence if for each $\epsilon > 0$, there is N so that m, n > N implies $d(x_n, x_m) < \epsilon$.
- **Definition:** We say the metric space X is complete if every Cauchy sequence in X converges.
- Examples: \mathbb{R} and \mathbb{C} are complete metric spaces with d(w, z) = |w z| and \mathbb{R}^n and \mathbb{C}^n are complete metric spaces with d(w, z) = ||w z||.
- **Definition:** We say G, a subset of the metric space X, is connected if there are no open subsets U and V of X so that $U \cap V = \emptyset$ but $G \cap U$ and $G \cap V$ are both non-empty.
- **Theorem:** In \mathbb{R} , a set is connected if and only if it is a finite or infinite interval.
- **Definition:** We say K, a subset of the metric space X, is compact if for every collection of open sets $\{U_j\}_{j\in J}$ with $K \subset \bigcup_{j\in J} U_j$ (an open cover of K, there are finitely many $U_{j_1}, U_{j_2}, \cdots, U_{j_n}$ such that $K \subset \bigcup_{k=1}^n U_{j_k}$ (a finite subcover).
- Theorem: If X is a metric space and K is a compact subset of X, then K is a closed and bounded set. If K is a compact subset of X and F is a subset of K that is closed in X, then F is compact.
- Theorem: In \mathbb{R}^n or \mathbb{C}^n , a subset K is a compact subset if and only if K is a closed and bounded set.
- Definition: If X and Y are metric spaces and $f: X \mapsto Y$ is a function mapping X into Y, we say f is continuous if for every open subset U in Y, the set $f^{-1}(U)$ is open in X.
- **Theorem:** If f is a function mapping the metric space X into Y, then f is continuous if and only if for every closed subset F of Y, the set $f^{-1}(F)$ is closed in X.
- **Theorem:** If f is a function mapping the metric space X into Y, then f is continuous if and only if for (x_n) a sequence in X with $\lim_{n\to\infty} x_n = z$ then $\lim_{n\to\infty} f(x_n) = f(z)$ in Y.
- Theorem: If f is a continuous function mapping the metric space X into Y and K is a compact subset of X, then f(K) is a compact subset of Y.
- **Theorem:** If f is a continuous function mapping the metric space X into Y and A is a connected subset of X, then f(A) is a connected subset of Y.
- Corollary: If f is a continuous, real valued function on the interval $[a, b] \subset \mathbb{R}$, then there are numbers c_1 and c_2 in [a, b] so that $f([a, b]) = [f(c_1), f(c_2)]$.

- Definition: If X and Y are metric spaces and f: X → Y is a function mapping X into Y, we say f is injective or 1-to-1 if, for x₁ and x₂ points of X, f(x₁) = f(x₂) implies x₁ = x₂ and we say f is surjective or onto if for each y in Y, there is a point x of X for which f(x) = y. If f is injective and surjective, defining g : Y → X by g(y) = x if f(x) = y, then g(f(x)) = x for all x in X and f(g(y)) = y for all y in Y. In this case, the function g is called the *inverse function for f* and we write g = f⁻¹. This introduces possible confusion between f⁻¹ as a set function and f⁻¹ as a point function, but the relation between them, if they both exist, is f⁻¹({y}) = {g(y)} = {f⁻¹(y)}.
- **Theorem:** Suppose X is a compact metric space and Y is a metric space. If f is a continuous, injective and surjective function mapping X onto Y, then Y is compact and f^{-1} is a continuous function mapping Y onto X.

Null Subsets or Subsets of Measure Zero of \mathbb{R}

- A subset F of \mathbb{R} is called a *null set* or *set of measure zero* if for each $\epsilon > 0$, there are real numbers $a_n < b_n$ for $n = 1, 2, 3, \cdots$ such that $\sum_n |b_n a_n|$ and $F \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$, that is F can be covered by a open intervals of arbitrarily small *total* length.
- **Examples:** For r a real number, $\{r\}$ is a set of measure zero and [0, 1] is set that is *not* measure zero.
- Theorem: A countable union of sets of measure zero is a set of measure zero.
- Corollary: Every countable subset of the real numbers is a set of measure zero.
- **Examples:** The set \mathbb{Q} of rational numbers is a set of measure zero. The set
 - $\Omega = \{x \in \mathbb{R} : x \text{ has a decimal expansion consisting of only 0's and 1's}\}$

is an uncountable set of measure zero and [0, 1] is an uncountable set that is *not* measure zero.