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Metric Spaces

• Definition: A metric space is a pair (X, d) where X is a non-empty set and
d : X ×X 7→ [0,∞) satisfies d(x, x) = 0 for all x in X, d(x, y) = d(y, x) > 0 for x 6= y
in X, and d(x, z) ≤ d(x, y) + d(y, z) for x, y, and z in X.

• Definition: In a metric space (X, d), U ⊂ X is an open set if U = ∅ or for each x in
U , there is ε > 0 such that {y ∈ X : d(x, y) < δ} ⊂ U . A set F ⊂ X is called closed if
X \ F is an open set in X.

• Definition: We say a sequence (xn) in X, a metric space, converges to y if for each
ε > 0, there is N so that n > N implies d(xn, y) < ε.

• Theorem: If F is a subset of X, a metric space, then F is closed if and only if for
every convergent sequence (xn) of points in F , say limn→∞ xn = y, then y is in F , also.

• Definition: We say the sequence (xn) in X, a metric space, is a Cauchy sequence if
for each ε > 0, there is N so that m,n > N implies d(xn, xm) < ε.

• Definition: We say the metric space X is complete if every Cauchy sequence in X
converges.

• Examples: R and C are complete metric spaces with d(w, z) = |w − z| and Rn and
Cn are complete metric spaces with d(w, z) = ‖w − z‖.
• Definition: We say G, a subset of the metric space X, is connected if there are no

open subsets U and V of X so that U∩V = ∅ but G∩U and G∩V are both non-empty.

• Theorem: In R, a set is connected if and only if it is a finite or infinite interval.

• Definition: We say K, a subset of the metric space X, is compact if for every collection
of open sets {Uj}j∈J with K ⊂

⋃
j∈J Uj (an open cover of K, there are finitely many

Uj1 , Uj2 , · · · , Ujn such that K ⊂
⋃n

k=1 Ujk (a finite subcover).

• Theorem: If X is a metric space and K is a compact subset of X, then K is a closed
and bounded set. If K is a compact subset of X and F is a subset of K that is closed
in X, then F is compact.

• Theorem: In Rn or Cn, a subset K is a compact subset if and only if K is a closed
and bounded set.

• Definition: If X and Y are metric spaces and f : X 7→ Y is a function mapping X
into Y , we say f is continuous if for every open subset U in Y , the set f−1(U) is open
in X.

• Theorem: If f is a function mapping the metric space X into Y , then f is continuous
if and only if for every closed subset F of Y , the set f−1(F ) is closed in X.

• Theorem: If f is a function mapping the metric space X into Y , then f is continuous
if and only if for (xn) a sequence in X with limn→∞ xn = z then limn→∞ f(xn) = f(z)
in Y .

• Theorem: If f is a continuous function mapping the metric space X into Y and K is
a compact subset of X, then f(K) is a compact subset of Y .

• Theorem: If f is a continuous function mapping the metric space X into Y and A is
a connected subset of X, then f(A) is a connected subset of Y .

• Corollary: If f is a continuous, real valued function on the interval [a, b] ⊂ R, then
there are numbers c1 and c2 in [a, b] so that f([a, b]) = [f(c1), f(c2)].
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• Definition: If X and Y are metric spaces and f : X 7→ Y is a function mapping X
into Y , we say f is injective or 1-to-1 if, for x1 and x2 points of X, f(x1) = f(x2)
implies x1 = x2 and we say f is surjective or onto if for each y in Y , there is a point
x of X for which f(x) = y. If f is injective and surjective, defining g : Y 7→ X by
g(y) = x if f(x) = y, then g(f(x)) = x for all x in X and f(g(y)) = y for all y in Y . In
this case, the function g is called the inverse function for f and we write g = f−1. This
introduces possible confusion between f−1 as a set function and f−1 as a point function,
but the relation between them, if they both exist, is f−1({y}) = {g(y)} = {f−1(y)}.
• Theorem: Suppose X is a compact metric space and Y is a metric space. If f is a

continuous, injective and surjective function mapping X onto Y , then Y is compact
and f−1 is a continuous function mapping Y onto X.

Null Subsets or Subsets of Measure Zero of R

• A subset F of R is called a null set or set of measure zero if for each ε > 0, there are

real numbers an < bn for n = 1, 2, 3, · · · such that
∑

n |bn − an| and F ⊂
∞⋃
n=1

(an, bn),

that is F can be covered by a open intervals of arbitrarily small total length.

• Examples: For r a real number, {r} is a set of measure zero and [0, 1] is set that is
not measure zero.

• Theorem: A countable union of sets of measure zero is a set of measure zero.

• Corollary: Every countable subset of the real numbers is a set of measure zero.

• Examples: The set Q of rational numbers is a set of measure zero. The set

Ω = {x ∈ R : x has a decimal expansion consisting of only 0’s and 1’s}
is an uncountable set of measure zero and [0, 1] is an uncountable set that is not measure
zero.


