Math 44500 (Cowen) Topics & Terminology February 12, 2014

Metric Spaces

e Definition: A metric space is a pair (X, d) where X is a non-empty set and
d: X x X +— [0,00) satisfies d(x,z) =0 for all z in X, d(z,y) = d(y,xz) >0 for z #y
in X, and d(z, 2z) < d(z,y) + d(y, ) for x, y, and z in X.

e Definition: In a metric space (X,d), U C X is an open set if U = () or for each x in
U, there is € > 0 such that {y € X : d(z,y) <0} CU. A set F C X is called closed if
X \ F is an open set in X.

e Definition: We say a sequence (x,,) in X, a metric space, converges to y if for each
€ > 0, there is N so that n > N implies d(z,,y) < €.

e Theorem: If F' is a subset of X, a metric space, then F' is closed if and only if for
every convergent sequence (x,) of points in F', say lim,_,~ =, = ¥y, then y is in F, also.

e Definition: We say the sequence (x,) in X, a metric space, is a Cauchy sequence if
for each € > 0, there is N so that m,n > N implies d(x,, x,) < €.

e Definition: We say the metric space X is complete if every Cauchy sequence in X
converges.

e Examples: R and C are complete metric spaces with d(w, z) = |w — z| and R™ and
C™ are complete metric spaces with d(w, z) = ||[w — z||.

e Definition: We say G, a subset of the metric space X, is connected if there are no
open subsets U and V of X so that UNV = () but GNU and GNV are both non-empty.

e Theorem: In R, a set is connected if and only if it is a finite or infinite interval.

e Definition: We say K, a subset of the metric space X, is compact if for every collection
of open sets {U;}jes with K C U;c; U; (an open cover of K, there are finitely many
Uj,, Uj,, -+, Uj, such that K C (Jy_, Uj, (a finite subcover).

e Theorem: If X is a metric space and K is a compact subset of X, then K is a closed

and bounded set. If K is a compact subset of X and F' is a subset of K that is closed
in X, then F'is compact.

e Theorem: In R" or C", a subset K is a compact subset if and only if K is a closed
and bounded set.

e Definition: If X and Y are metric spaces and f : X — Y is a function mapping X
into Y, we say f is continuous if for every open subset U in Y, the set f~1(U) is open
in X.

e Theorem: If f is a function mapping the metric space X into Y, then f is continuous
if and only if for every closed subset F' of Y, the set f~!(F) is closed in X.

e Theorem: If f is a function mapping the metric space X into Y, then f is continuous
if and only if for (x,) a sequence in X with lim,,_, x,, = z then lim,_, f(x,) = f(2)
inY.

e Theorem: If f is a continuous function mapping the metric space X into Y and K is
a compact subset of X, then f(K) is a compact subset of Y.

e Theorem: If f is a continuous function mapping the metric space X into Y and A is
a connected subset of X, then f(A) is a connected subset of Y.

e Corollary: If f is a continuous, real valued function on the interval [a,b] C R, then
there are numbers ¢; and ¢z in [a, b] so that f([a,b]) = [f(c1), f(c2)].



e Definition: If X and Y are metric spaces and f : X — Y is a function mapping X
into Y, we say f is injective or 1-to-1 if, for z; and o points of X, f(x1) = f(x2)
implies 1 = x9 and we say [ is surjective or onto if for each y in Y, there is a point
x of X for which f(x) = y. If f is injective and surjective, defining g : Y — X by
g(y) =z if f(z) =y, then g(f(z)) =z for all z in X and f(g(y)) =y forallyinY. In
this case, the function g is called the inverse function for f and we write g = f~!. This
introduces possible confusion between f~! as a set function and f~! as a point function,
but the relation between them, if they both exist, is f_l({y}) ={g9(y)} = {f~1(y)}.

e Theorem: Suppose X is a compact metric space and Y is a metric space. If f is a
continuous, injective and surjective function mapping X onto Y, then Y is compact
and f~!is a continuous function mapping Y onto X.

Null Subsets or Subsets of Measure Zero of R

e A subset F' of R is called a null set or set of measure zero if for each € > 0, there are

o0

real numbers a,, < b, for n =1,2,3,--- such that ) [b, —a,| and F C U (an,bn),
n=1

that is F' can be covered by a open intervals of arbitrarily small total length.

e Examples: For r a real number, {r} is a set of measure zero and [0, 1] is set that is
not measure zero.

e Theorem: A countable union of sets of measure zero is a set of measure zero.
e Corollary: Every countable subset of the real numbers is a set of measure zero.
e Examples: The set Q of rational numbers is a set of measure zero. The set

Q ={x € R: x has a decimal expansion consisting of only 0’s and 1’s}

is an uncountable set of measure zero and [0, 1] is an uncountable set that is not measure
zero.



