Due Thursday, 21 April:

Definition: Suppose $\left(f_{n}\right)$ is a sequence of functions. We say the sequence $\left(f_{n}\right)$ is equicontinuous if, for each $\epsilon>0$, there is $\delta>0$ such that if $|u-v|<\delta$ then $\left|f_{n}(u)-f_{n}(v)\right|<\epsilon$ for every n.
A. Prove that if $\left(f_{n}\right)$ is an equicontinuous sequence of functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for every x in $[0,1]$ then the sequence $\left(f_{n}\right)$ converges uniformly to 0 on $[0,1]$.

Definition: For x in \mathbb{R}, let

$$
\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad \text { and } \quad \sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

(Easy calculations (that you do not need to duplicate) show that these series converge absolutely for all x in \mathbb{R} and uniformly on every compact subset of \mathbb{R}, so the definitions make sense.)
B. Using the definitions above, prove that, for every x in \mathbb{R},

$$
\frac{d}{d x} \cos (x)=-\sin (x) \quad \text { and } \quad \frac{d}{d x} \sin (x)=\cos (x)
$$

From these equalities, conclude that the function

$$
k(x)=(\sin (x))^{2}+(\cos (x))^{2}
$$

is actually a constant and, using the series above, find the constant.
C. By multiplying the series for $\sin (x)$ by the series for $\cos (x)$ show that $\sin (2 x))=2 \sin (x) \cos (x)$ for all x in \mathbb{R}.

Hint: If k is a positive integer,

$$
\begin{aligned}
(a+b)^{2 k+1} & =\sum_{j=0}^{2 k+1} \frac{(2 k+1)!}{j!(2 k+1-j)!} a^{2 k+1-j} b^{j} \\
& =\sum_{\ell=0}^{k} \frac{(2 k+1)!}{(2 \ell)!(2(k-\ell)+1)!} a^{2(k-\ell)+1} b^{2 \ell}+\frac{(2 k+1)!}{(2 \ell+1)!(2(k-\ell))!} a^{2(k-\ell)} b^{2 \ell+1}
\end{aligned}
$$

so for $a=b=1$, we get

$$
\begin{aligned}
2^{2 k+1} & =\sum_{\ell=0}^{k} \frac{(2 k+1)!}{(2 \ell)!(2(k-\ell)+1)!}+\frac{(2 k+1)!}{(2 \ell+1)!(2(k-\ell))!} \\
& =2 \sum_{\ell=0}^{k} \frac{(2 k+1)!}{(2 \ell+1)!(2(k-\ell))!}
\end{aligned}
$$

which means

$$
\frac{2^{2 k+1}}{(2 k+1)!}=2 \sum_{\ell=0}^{k} \frac{1}{(2 \ell+1)!(2(k-\ell))!}
$$

