Math 44500 (Cowen)

Handout 9

Due Thursday, 21 April:

Definition: Suppose (f_n) is a sequence of functions. We say the sequence (f_n) is equicontinuous if, for each $\epsilon > 0$, there is $\delta > 0$ such that if $|u-v| < \delta$ then $|f_n(u) - f_n(v)| < \epsilon$ for every n.

A. Prove that if (f_n) is an equicontinuous sequence of functions such that $\lim_{n\to\infty} f_n(x) = 0$ for every x in [0, 1] then the sequence (f_n) converges uniformly to 0 on [0, 1].

Definition: For x in \mathbb{R} , let

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 and $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$

(Easy calculations (that you do not need to duplicate) show that these series converge absolutely for all x in \mathbb{R} and uniformly on every compact subset of \mathbb{R} , so the definitions make sense.)

B. Using the definitions above, prove that, for every x in \mathbb{R} ,

$$\frac{d}{dx}\cos(x) = -\sin(x)$$
 and $\frac{d}{dx}\sin(x) = \cos(x)$

From these equalities, conclude that the function

$$k(x) = (\sin(x))^2 + (\cos(x))^2$$

is actually a constant and, using the series above, find the constant.

C. By multiplying the series for sin(x) by the series for cos(x) show that sin(2x) = 2 sin(x) cos(x) for all x in \mathbb{R} .

Hint: If k is a positive integer,

$$(a+b)^{2k+1} = \sum_{j=0}^{2k+1} \frac{(2k+1)!}{j!(2k+1-j)!} a^{2k+1-j} b^j$$

=
$$\sum_{\ell=0}^k \frac{(2k+1)!}{(2\ell)!(2(k-\ell)+1)!} a^{2(k-\ell)+1} b^{2\ell} + \frac{(2k+1)!}{(2\ell+1)!(2(k-\ell))!} a^{2(k-\ell)} b^{2\ell+1}$$

so for a = b = 1, we get

$$2^{2k+1} = \sum_{\ell=0}^{k} \frac{(2k+1)!}{(2\ell)!(2(k-\ell)+1)!} + \frac{(2k+1)!}{(2\ell+1)!(2(k-\ell))!}$$
$$= 2\sum_{\ell=0}^{k} \frac{(2k+1)!}{(2\ell+1)!(2(k-\ell))!}$$

which means

$$\frac{2^{2k+1}}{(2k+1)!} = 2\sum_{\ell=0}^{k} \frac{1}{(2\ell+1)!(2(k-\ell))!}$$