FOR DISCUSSION Thursday, 24 February:

From page 155 of BS: 5, 6, 10, 12
From page 182 of BS: 3, 4, 5, 7cd, 9ab
A. For $x>0$, define the function L by

$$
L(x)=\int_{1}^{x} \frac{1}{t} d t
$$

(For $0<x<1$, the integral $\int_{1}^{x} \frac{1}{t} d t$ is interpreted as $-\int_{x}^{1} \frac{1}{t} d t$, as usual.)
(a) Prove, using the Fundamental Theorem of Calculus, that the function L is continuous and differentiable on $(0, \infty)$. Find $L(1)$. Use an easy Riemann sum estimate to show that $L(2)<1$ and $L(4)>1$.
(b) Prove that L is strictly increasing on $(0, \infty)$. It is a fact that $\lim _{x \rightarrow \infty} L(x)=\infty$ and that $\lim _{x \rightarrow 0^{+}} L(x)=-\infty$, so that L is a continuous and differentiable function that maps $(0, \infty)$ onto \mathbb{R}.
(c) Prove that if $a>1$ and $b>1$, then $L(a b)=L(a)+L(b)$. (Hint: Use

$$
L(a b)=\int_{1}^{a b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{a b} \frac{1}{t} d t
$$

and use the substitution $u=t / a$ to change variables in the second integral.)
(d) Since L is a strictly increasing differentiable function mapping $(0, \infty)$ onto \mathbb{R}, it has a continuous and differentiable inverse function: let E be the inverse function for L so that E is a differentiable function that maps \mathbb{R} onto $(0, \infty)$ and satisfies $E(L(x))=x$ and $L(E(y))=y$. Find $E(0)$. Show that $2<E(1)<4$.
(e) Use the theorems we know to find the derivative of E, that is, find $E^{\prime}(y)$ for y in \mathbb{R}.
(f) Use part (c) above to show that $E(p+q)=E(p) E(q)$.

