Due Thursday, 27 January:

From page 118 of BS: 4, 9 and prove $\lim _{x \rightarrow \infty} \frac{3 x-7}{x+5}=3$
A. If the function g maps X into itself and a is a point of X, we say a is a fixed point of g if $g(a)=a$. Suppose f is a continuous function on $[0,1]$ and $f([0,1]) \subset[0,1]$. Use the strategy given in (a)-(d) to show that f has a fixed point in $[0,1]$. (This is a special case of the Brouwer Fixed Point Theorem for \mathbb{R}^{n}.)
(a) Let $L=\{x \in[0,1]: f(x)<x\}$ and let $G=\{x \in[0,1]: f(x)>x\}$. Show that each of L and G are open subsets of $[0,1]$, that is, there are L^{\prime} and G^{\prime} open subsets of \mathbb{R} such that $L=L^{\prime} \cap[0,1]$ and $G=G^{\prime} \cap[0,1]$.
(b) Show that $L \cap G=\emptyset$.
(c) Show that $L \cup G \neq[0,1]$.
(d) Finish proof.
(e) Notice that each of the following are continuous functions that map $[0,1]$ into itself. Find fixed points (or approximations to three decimal places) of each of the functions:
(i) $f(x)=1-x$
(ii) $g(x)=1-3 x+3 x^{2}$
(iii) $h(x)=1 /(3-x)$
(iv) $c(x)=\cos (x)$
B. Compare with A: Suppose f is a continuous function on $[0, \infty)$ with $f([0, \infty)) \subset[0, \infty)$. Where does the proof you gave of \mathbf{A}. break down? Give an example of a continuous function mapping $[0, \infty)$ into itself with no fixed point.

Definition: Suppose f is a continuous function on $[0,1]$ and $f([0,1]) \subset[0,1]$. We define the iterates of f by $f_{(0)}(x)=x, f_{(1)}(x)=f(x), f_{(2)}(x)=f(f(x)), f_{(3)}(x)=f(f(f(x)))$, and more generally, for j in \mathbb{N}, let $f_{(j+1)}(x)=f\left(f_{(j)}(x)\right)$.

Convince yourself of the following facts:

- For each j in \mathbb{N}, the function $f_{(j)}$ is a continuous function mapping $[0,1]$ into itself.
- The collection $\left\{f_{(j)}: j \in \mathbb{N}\right\}$ is a (discrete) semi-group: $f_{(j)} \circ f_{(k)}=f_{(j+k)}$.
C. Compare with A:
(a) A contractive mapping is a mapping that satisfies, for some α with $0<\alpha<1$, that $|f(x)-f(y)| \leq \alpha|x-y|$. If f is a map of $[0,1]$ into itself that is contractive, then $a=\lim _{j \rightarrow \infty} f_{(j)}(0)$ exists and is the unique fixed point of f in $[0,1]$.
(b) If g is a continuous, increasing function of $[0,1]$ into $[0,1]$, then then $a=\lim _{j \rightarrow \infty} g_{(j)}(0)$ exists and is a fixed point of g in $[0,1]$.
(c) Find two fixed points of the (increasing) function $g(x)=x^{2}$.
D. Explain why the following strategy of built on the idea of C. does NOT work for proving the fixed point theorem of \mathbf{A}.: Suppose f is a continuous function mapping $[0,1]$ into itself. For any point p of $[0,1]$ (for example $p=0$), the sequence $f_{(j)}(p)$ has a convergent subsequence in $[0,1]$ and this subsequence should converge to a fixed point of f.

