Handout 3

Due Thursday, 27 January:

From page 118 of **BS**: 4, 9 and prove $\lim_{x\to\infty} \frac{3x-7}{x+5} = 3$

A. If the function g maps X into itself and a is a point of X, we say a is a fixed point of g if g(a) = a. Suppose f is a continuous function on [0, 1] and $f([0, 1]) \subset [0, 1]$. Use the strategy given in (a)-(d) to show that f has a fixed point in [0, 1]. (This is a special case of the *Brouwer* Fixed Point Theorem for \mathbb{R}^n .)

- (a) Let $L = \{x \in [0,1] : f(x) < x\}$ and let $G = \{x \in [0,1] : f(x) > x\}$. Show that each of L and G are open subsets of [0,1], that is, there are L' and G' open subsets of \mathbb{R} such that $L = L' \cap [0,1]$ and $G = G' \cap [0,1]$.
- (b) Show that $L \cap G = \emptyset$.
- (c) Show that $L \cup G \neq [0, 1]$.
- (d) Finish proof.
- (e) Notice that each of the following are continuous functions that map [0,1] into itself. Find fixed points (or approximations to three decimal places) of each of the functions:

(i)
$$f(x) = 1 - x$$

(ii) $g(x) = 1 - 3x + 3x^2$
(iii) $h(x) = 1/(3-x)$
(iv) $c(x) = \cos(x)$

B. Compare with **A**: Suppose f is a continuous function on $[0, \infty)$ with $f([0, \infty)) \subset [0, \infty)$. Where does the proof you gave of **A**. break down? Give an example of a continuous function mapping $[0, \infty)$ into itself with no fixed point.

Definition: Suppose f is a continuous function on [0,1] and $f([0,1]) \subset [0,1]$. We define the *iterates of* f by $f_{(0)}(x) = x$, $f_{(1)}(x) = f(x)$, $f_{(2)}(x) = f(f(x))$, $f_{(3)}(x) = f(f(f(x)))$, and more generally, for j in \mathbb{N} , let $f_{(j+1)}(x) = f(f_{(j)}(x))$.

Convince yourself of the following facts:

- For each j in \mathbb{N} , the function $f_{(j)}$ is a continuous function mapping [0,1] into itself.
- The collection $\{f_{(j)} : j \in \mathbb{N}\}$ is a (discrete) semi-group: $f_{(j)} \circ f_{(k)} = f_{(j+k)}$.

C. Compare with A:

- (a) A contractive mapping is a mapping that satisfies, for some α with $0 < \alpha < 1$, that $|f(x) f(y)| \leq \alpha |x y|$. If f is a map of [0, 1] into itself that is contractive, then $a = \lim_{j \to \infty} f_{(j)}(0)$ exists and is the unique fixed point of f in [0, 1].
- (b) If g is a continuous, increasing function of [0, 1] into [0, 1], then then $a = \lim_{j \to \infty} g_{(j)}(0)$ exists and is a fixed point of g in [0, 1].
- (c) Find two fixed points of the (increasing) function $g(x) = x^2$.

D. Explain why the following strategy of built on the idea of **C.** does *NOT* work for proving the fixed point theorem of **A.**: Suppose f is a continuous function mapping [0, 1] into itself. For any point p of [0, 1] (for example p = 0), the sequence $f_{(j)}(p)$ has a convergent subsequence in [0, 1] and this subsequence should converge to a fixed point of f.