Math 44500 (Cowen)

Due Thursday, 20 January:

A. Suppose A is a subset of \mathbb{R}^n . Show that a is a boundary point of A if and only if there is a sequence (a_n) consisting of points in A such that $\lim_{n\to\infty} a_n = a$ AND a sequence (b_n) consisting of points in the complement of A such that $\lim_{n\to\infty} b_n = a$. (Note: constant sequences are OK.)

B. Suppose G is a subset of \mathbb{R}^n . Show that G is an open set if and only if it does not contain any of its boundary points.

C. Suppose F is a subset of \mathbb{R}^n . Show that F is a closed set if and only if it contains all of its boundary points.

- **D.** For x and y real numbers, let $d(x, y) = |\arctan(x) \arctan(y)|$.
 - (a) Show that d is a metric on R, that is, R with the metric d is a metric space.
 (Hint: you may want to prove that arctan is an increasing function on R and use that fact to show that d is a metric.)
 - (b) If we say a set K is bounded if $\sup\{d(x,y) : x, y \in K\}$ is finite, show that \mathbb{R} is a bounded set with this metric.
 - (c) Give an example of a set, in the metric space (\mathbb{R}, d) that is closed and bounded, (in this sense) but not compact. This shows that the characterization of compact sets in \mathbb{R}^n as the closed and bounded sets does not extend to all metric spaces.

E. Suppose $K \subset \mathbb{N}$, regarded as a subset of \mathbb{R} . Show that K is compact if and only if K is finite.

NOTE: correction in the definition of connected:

A set S is connected there are NOT open sets U and V so that $U \cap V = \emptyset$, $U \cap S \neq \emptyset$, $V \cap S \neq \emptyset$, and $S \subset U \cup V$

F. Let $S = \{(x, y) \in \mathbb{R}^2 : x \le 0 \text{ OR both } y > 0 \text{ and } xy \ge 1\}$

- (a) Prove that S is a closed set in \mathbb{R}^2 .
- (b) Show that S is not connected, that is, find open sets U and V in \mathbb{R}^2 so that $S \subset U \cup V$ and $U \cap V = \emptyset$.