Due Thursday, 20 January:

A. Suppose A is a subset of \mathbb{R}^{n}. Show that a is a boundary point of A if and only if there is a sequence $\left(a_{n}\right)$ consisting of points in A such that $\lim _{n \rightarrow \infty} a_{n}=a$ AND a sequence (b_{n}) consisting of points in the complement of A such that $\lim _{n \rightarrow \infty} b_{n}=a$.
(Note: constant sequences are OK.)
B. Suppose G is a subset of \mathbb{R}^{n}. Show that G is an open set if and only if it does not contain any of its boundary points.
C. Suppose F is a subset of \mathbb{R}^{n}. Show that F is a closed set if and only if it contains all of its boundary points.
D. For x and y real numbers, let $d(x, y)=|\arctan (x)-\arctan (y)|$.
(a) Show that d is a metric on \mathbb{R}, that is, \mathbb{R} with the metric d is a metric space.
(Hint: you may want to prove that arctan is an increasing function on \mathbb{R} and use that fact to show that d is a metric.)
(b) If we say a set K is bounded if $\sup \{d(x, y): x, y \in K\}$ is finite, show that \mathbb{R} is a bounded set with this metric.
(c) Give an example of a set, in the metric space (\mathbb{R}, d) that is closed and bounded, (in this sense) but not compact. This shows that the characterization of compact sets in \mathbb{R}^{n} as the closed and bounded sets does not extend to all metric spaces.
E. Suppose $K \subset \mathbb{N}$, regarded as a subset of \mathbb{R}. Show that K is compact if and only if K is finite.

NOTE: correction in the definition of connected:

A set S is connected there are NOT open sets U and V so that $U \cap V=\emptyset, U \cap S \neq \emptyset, V \cap S \neq \emptyset$, and $S \subset U \cup V$
F. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: x \leq 0 \quad\right.$ OR both $\quad y>0$ and $\left.x y \geq 1\right\}$
(a) Prove that S is a closed set in \mathbb{R}^{2}.
(b) Show that S is not connected, that is, find open sets U and V in \mathbb{R}^{2} so that $S \subset U \cup V$ and $U \cap V=\emptyset$.

