1. Consider ternary expansions of integers and rational numbers: The digits in a ternary expansion are 0,1 , or 2 and the number $a=\left(t_{4} t_{3} t_{2} t_{1} t_{0} \cdot d_{1} d_{2} d_{3}\right)_{3}$ in base 3 is

$$
a=t_{4} 3^{4}+t_{3} 3^{3}+t_{2} 3^{2}+t_{1} 3^{1}+t_{0} 3^{0}+d_{1} 3^{-1}+d_{2} 3^{-2}+d_{3} 3^{-3}
$$

(a) What number (as an integer and fraction in standard notation) is 2012.1_{3} ?
(b) Use the fact that 3 is represented as $10_{3}, 4$ is represented as 11_{3} and long division to represent $3 / 4$ in base 3 .
(c) What number does $(.120120120120120 \cdots)_{3}$ represent?
(d) What number does $(.2101222222222222222 \cdots)_{3}$ represent?
(e) Explain why all rational numbers in $(0,1)$, that is, numbers of the form p / q where p and q are positive integers with $p<q$, have ternary expansions that are repeating or terminating.
(f) Explain why no irrational numbers x with $0<x<1$ have repeating or terminating ternary expansions.

