A. (1) Prove that if S is a subset of \mathbb{R} such that S is a set of measure zero (a null set) and T is a subset of S, then T is a set of measure zero also.
(2) Let S be a non-empty subset of \mathbb{R} such that S is a set of measure zero. Prove that every connected subset of S is $\{p\}$ where p is a point of S.
B. Let a and b be real numbers with $a<b$ and suppose f is a continuous real-valued function on $[a, b]$. Define F on $[a, b]$ by $F(x)=\int_{a}^{x} f(t) d t$.
(1) For c with $a<c<b$, let $G(x)=\int_{c}^{x} f(t) d t$. Write G in terms of F.
(2) Find $G^{\prime}(x)$ for $c<x<b$.
(3) For c with $a<c<b$, let $H(x)=\int_{x}^{c} f(t) d t$. Write H in terms of F.
(4) Find $H^{\prime}(x)$ for $a<x<c$.

From page 224: 10, 11, 16

Sections 11.3 and 11.4 are related to things covered in class relevant to these problems.
C. Let S and T be sets and let f be a function on S with values in T, that is, $f: S \mapsto T$, or for each s in $S, f(s)$ is a point of T.
Find an example of sets S and T and a function $f: S \mapsto T$ and subsets P and Q of S, such that $f(P) \cap f(Q) \neq f(P \cap Q)$
D. Let S and T be sets and let f be a function on S with values in T, that is, $f: S \mapsto T$: Prove, for subsets U and V of T, that $f^{-1}(U) \cap f^{-1}(V)=f^{-1}(U \cap V)$
E. Let X be a metric space with metric d and suppose f is a function mapping X into itself, that is, for each x in $X, f(x) \in X$. Recall that we defined the function f is continuous on X if, for each open set U in X, the set $f^{-1}(U)$ is also open in X.
Prove: The function f is continuous on X if and only if for each point a in X and each sequence $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.

