Math 44500 (Cowen)

Homework 3

A. As usual, we will regard \mathbb{R}^2 as a metric space with the distance function

$$d(p,q) = ||p-q|| = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

for $p = (p_1, p_2)$ and $q = (q_1, q_2)$. This means that a subset U of \mathbb{R}^2 is open if for every p in U, there is $\epsilon > 0$ so that the open ball $\{q \in \mathbb{R}^2 : d(p,q) < \epsilon\}$ is a subset of U. Prove that a sequence $p_n = (p_{1,n}, p_{2,n})$ satisfies $\lim_{n \to \infty} p_n = q = (q_1, q_2)$ if and only if $\lim_{n \to \infty} p_{1,n} = q_1$ and $\lim_{n \to \infty} p_{2,n} = q_2$.

You may do **B.** and **C.** in either order, and you may use the truth of the first one you do in the proof of the second.

B. Let f be a continuous function on (a, b) for a and b real numbers with a < b. Let $S = \{(x, y) \in \mathbb{R}^2 : a < x < b \text{ and } y > f(x)\}$. Prove that S is an open subset of \mathbb{R}^2 . As a corollary, deduce that the set $B = \{(x, y) \in \mathbb{R}^2 : a < x < b \text{ and } y < f(x)\}$ is also an open subset of \mathbb{R}^2 .

C. Let g be a continuous function on [a, b] for a and b real numbers with a < b. Let $G = \{(x, y) \in \mathbb{R}^2 : a \le x \le b \text{ and } y = f(x)\}$. Prove that G is a closed subset of \mathbb{R}^2 . As a corollary, deduce that the set $H = \{(x, y) \in \mathbb{R}^2 : a \le x \le b \text{ and } y \le f(x)\}$ is also closed.

From page 206: 1, 2 From page 215: 8, 10