A. As usual, we will regard \mathbb{R}^{2} as a metric space with the distance function

$$
d(p, q)=\|p-q\|=\sqrt{\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}}
$$

for $p=\left(p_{1}, p_{2}\right)$ and $q=\left(q_{1}, q_{2}\right)$. This means that a subset U of \mathbb{R}^{2} is open if for every p in U, there is $\epsilon>0$ so that the open ball $\left\{q \in \mathbb{R}^{2}: d(p, q)<\epsilon\right\}$ is a subset of U.
Prove that a sequence $p_{n}=\left(p_{1, n}, p_{2, n}\right)$ satisfies $\lim _{n \rightarrow \infty} p_{n}=q=\left(q_{1}, q_{2}\right)$ if and only if $\lim _{n \rightarrow \infty} p_{1, n}=q_{1}$ and $\lim _{n \rightarrow \infty} p_{2, n}=q_{2}$.

You may do B. and \mathbf{C}. in either order, and you may use the truth of the first one you do in the proof of the second.
B. Let f be a continuous function on (a, b) for a and b real numbers with $a<b$.

Let $S=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b\right.$ and $\left.y>f(x)\right\}$. Prove that S is an open subset of \mathbb{R}^{2}.
As a corollary, deduce that the set $B=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b\right.$ and $\left.y<f(x)\right\}$ is also an open subset of \mathbb{R}^{2}.
C. Let g be a continuous function on $[a, b]$ for a and b real numbers with $a<b$.

Let $G=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b\right.$ and $\left.y=f(x)\right\}$. Prove that G is a closed subset of \mathbb{R}^{2}.
As a corollary, deduce that the set $H=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b\right.$ and $\left.y \leq f(x)\right\}$ is also closed.

From page 206: 1, 2
From page 215: 8, 10

