- **1.** Let \mathbb{Z} denote the set of integers. Prove that d(m, n) = |m n| defines a metric on \mathbb{Z} .
- **2.** Suppose (X, d) is a metric space. Let D be the non-negative function on $X \times X$ be defined by

$$D(x,y) = \begin{cases} d(x,y) & \text{for } d(x,y) < 1\\ 1 & \text{for } d(x,y) \ge 1 \end{cases}$$

- (a) Prove that D is also a metric on X, so that (X, D) is also a metric space.
- (b) Prove that the sequence (x_j) in X converges to w in the metric d on X if and only if the sequence (x_j) in X converges to w in the metric D.
 (This means that the metric spaces (X, d) and (X, D) have the same convergent sequences.)
- (c) Show that the metric space (X, d) is a complete metric space if and only if (X, D) is a complete metric space.
- **3.**(a) Show that the function $f(t) = \frac{t}{1+t}$ is an increasing function on $[0, \infty)$.
 - (b) Prove that $\Delta(x, y) = \frac{|x y|}{1 + |x y|}$ is a metric on \mathbb{R} .
- 4. Suppose (X, d) is a metric space. For c in X and r > 0, let B(c, r) be defined by $B(c, r) = \{x \in X : d(x, c) < r\}$, the 'open' ball with center c and radius r, and let $F(c, r) = \{x \in X : d(x, c) \le r\}$, be the 'closed' ball with center c and radius r.
 - (a) Show that, for every c in X and r > 0, the set B(c, r) is an open set in X.
 - (b) Show that, for every c in X and r > 0, the set F(c, r) is a closed set in X.

5. Suppose X is a set and \mathcal{T} is a topology on X. Recall that this means that (X, \mathcal{T}) is a topological space and that the open sets in this space are the subsets of X that are in \mathcal{T} , and the closed sets in this space are the sets $F = X \setminus U = U^c$ where U is an open set.

- (a) Show that if F_1, F_2, \dots, F_k are closed sets in X, then $\bigcup_{j=1}^{n} F_j$ is also a closed set in X.
- (b) Show that if J is an index set and F_j is a closed set in X for each j in J, then $\bigcap_{j \in J} F_j$ is also a closed set in X.

Definition: Suppose X is a topological space. For a subset S of X, the closure of S in X, denoted \overline{S} , is the intersection of all the closed sets in X that contain S.

By part (b) of Exercise 4, the closure \overline{S} is a closed set for any set S and, indeed, \overline{S} is the smallest closed set containing S.

- **6.**(a) Consider \mathbb{R}^2 as a metric space using the usual distance as the metric. For c a point in \mathbb{R}^2 and r > 0, prove that the closed ball F(c, r) is the closure of the open ball B(c, r), that is, prove that $\overline{B(c, r)} = F(c, r)$.
 - (b) Decide whether the conclusion in part (a) is true for all metric spaces. That is, either prove that if (X, d) is any metric space, c is any point in X and r > 0, then $\overline{B(c, r)} = F(c, r)$, **OR** find an example of a metric space X, a point c in X, and a number r > 0 so that $\overline{B(c, r)} \neq F(c, r)$.