Math 444 (Cowen) Reading Assignment $4 \quad$ Due 2:00p, 3 November 2010

Read Chapter 5, Section 3 of Bartle \& Sherbert's book; then, send email to ccowen@math.iupui . edu with your answers to the following questions:

1. "Was this section clear?" "Do you have any questions?"
2. The Maximum-Minimum Theorem (Thm 5.3.4) has hypotheses that require the function f to be continuous on a closed and bounded interval.
(a) Find a continuous function on a closed, but unbounded interval that does not have an absolute maximum value.
(b) Find a continuous function on a bounded, but not closed interval that does not have an absolute maximum value.
(c) Find a function that is defined, but not continuous, on a closed and bounded interval that does not have an absolute maximum value.
3. The Location of Roots Theorem (Thm 5.3.5) has hypotheses that require the function f to be continuous on an interval $[a, b]$ with $f(a)<0<f(b)$ or $f(b)<0<f(a)$. Find a function that is defined, but not continuous, on the interval [1,4] and satisfies $f(1)<0<f(4)$ but for which there is no number c with $1<c<4$ so that $f(c)=0$.
4. The proof of the Location of Roots Theorem (Thm 5.3.5) uses the bisection method. Let $f(x)=x^{2}-x-1$. Notice that $f(1)=-1<0$ and $f(2)=2>0$. Use the bisection method to find five intervals, starting with $[1,2]$, of lengths $1,1 / 2,1 / 4,1 / 8$, and $1 / 16$ such that there is a point c in each of them with $f(c)=0$.
