Text, page 135: 1, 4 (DON'T use ' $\lim _{x \rightarrow \infty}$ '), 5, 6, 9, 10, 11

Definition. If $I=[a, b]$ is a closed and bounded interval in \mathbb{R} and f is a real valued function defined on I, we say f is strictly increasing on I if for each x and y with $a \leq x<y \leq b$, we have $f(x)<f(y)$.
A. Let f be a strictly increasing, continuous function on the interval $I=[a, b]$ and let J be the interval $[f(a), f(b)]$. Show that f is a bijection of I onto J.
B. Let f be a strictly increasing function defined on the interval $I=[a, b]$ and let $J=[f(a), f(b)]$. Suppose, also, that f is a bijection of I onto J.

Prove that f is continuous on the interval I.

