PROBLEMS

September 12:

18. Let $f(z)=z^{4}$. Write z as $z=x+i y \sim(x, y)$ and write f as

$$
f(z)=u(z)+i v(z)=u(x+i y)+i v(x+i y) \sim u(x, y)+i v(x, y)
$$

(a) Find $u(x, y)$ and $v(x, y)$ as functions of x and y.
(b) Use the Cauchy-Riemann equations (and the fact that the relevant functions are continuous) to show that $f(z)=z^{4}$ is analytic.
19. For which real numbers a, b, c, and d is the function $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ harmonic on \mathbb{C} ? For the cases in which u is harmonic, find a harmonic conjugate, v, of u.
20. Let $u(x, y)=\frac{x^{2}+y^{2}-1}{(x-1)^{2}+y^{2}}$
(a) Show that $u(x, y)$ is a harmonic function on $\mathbb{R}^{2} \backslash\{(1,0)\}$
(b) Find a harmonic conjugate v for u on the same domain.
(c) Find a function $f(z)$ that is analytic on $\mathbb{C} \backslash\{1\}$ such that u is the real part of f and v is the imaginary part of f.
21. Let $a \neq 0, b$, and c be complex numbers, and let $p(z)=a z^{2}+b z+c$. The quadratic formula from high school was The roots of p are the numbers:

$$
r_{+}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } r_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Show that the quadratic formula works for complex numbers also by showing that p can be factored as

$$
p(z)=a\left(z-r_{+}\right)\left(z-r_{-}\right)
$$

22. Let $F(z)=\frac{z^{3}+2 z+5}{z^{4}-3 z^{2}-4}$. (Note that the denominator of F can be factored as $\left.\left(z^{2}-4\right)\left(z^{2}+1\right).\right) \quad$ Find the partial fractions decomposition of F; that is, find complex numbers a, b, c, d, p, q, r and s so that:

$$
F(z)=\frac{a}{z-p}+\frac{b}{z-q}+\frac{c}{z-r}+\frac{d}{z-s}
$$

