Examples

1. Find vectors that span $\mathcal{N}(C)$ the nullspace of the matrix $C=\left(\begin{array}{rrrr}1 & -1 & 0 & 2 \\ 2 & 1 & 1 & 0 \\ 3 & 0 & 1 & 2\end{array}\right)$
2. Find vectors that span $\mathcal{R}(C)$, the range of the matrix $C=\left(\begin{array}{rrrr}1 & -1 & 0 & 2 \\ 2 & 1 & 1 & 0 \\ 3 & 0 & 1 & 2\end{array}\right)$
3. Let $B=\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & -1 & 2 \\ -1 & 0 & 1\end{array}\right)$.
(a) Show that $(4,-3,-3)$ is a linear combination of $(1,2,-1),(1,-1,0)$, and $(-1,2,1)$.
(b) The vector $v=(1,2,-1)+2(1,-1,0)-(-1,2,1)=(4,-2,-2)$ is a linear combination of the columns of B. Find X so that $B X=v$.
(c) Is the vector $(-2,11,1)$ in the subspace spanned by $(1,2,-1),(1,-1,0)$, and $(-1,2,1)$?
4. In answering a question on her linear algebra homework, April claimed that the subspace \mathcal{W} is spanned by the set $u_{1}=(1,0,1)$ and $u_{2}=(0,1,-1)$. Michelle claimed that the subspace \mathcal{W} is spanned by $v_{1}=(1,1,0), v_{2}=(2,1,1)$, and $v_{3}=(1,-1,2)$. Do their answers agree with each other, that is, is the subspace spanned by the set $\left\{u_{1}, u_{2}\right\}$ the same as the subspace spanned by $\left\{v_{1}, v_{2}, v_{3}\right\}$?
5. In answering a question on his linear algebra homework, Max claimed that the subspace \mathcal{U} is spanned by the set $u_{1}=(1,0,1,1), u_{2}=(0,1,-1,0)$ and $u_{3}=(0,0,1,2)$. Spike claimed that the subspace \mathcal{U} is spanned by $v_{1}=(1,1,0,1), v_{2}=(2,1,1,2)$, and $v_{3}=(1,-1,2,1)$. Do they agree with each other, that is, is the subspace spanned by the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ the same as the subspace spanned by $\left\{v_{1}, v_{2}, v_{3}\right\}$?

Decide if the following sets of vectors are linearly dependent or independent. If independent, prove that they are, if dependent, find a non-trivial linear combination of the vectors that gives zero.
6. $\{(0,1,1,-1),(1,3,1,-2),(2,1,0,-3),(3,1,-1,2),(2,-1,2,0)\}$
7. $\{(1,1,-1,2),(3,-1,1,1),(2,0,-1,1),(0,2,-3,2)\}$
8. The vectors $v_{1}=(1,-1,2), v_{2}=(-1,2,-3), v_{3}=(1,1,-1)$, and $v_{4}=(-2,3,-4)$ are linearly dependent in \mathbb{R}^{3}. Write one of the vectors as a linear combination of the rest.
9. Find a basis for the solution space of the system:

$$
\left\{\begin{array}{c}
u+3 v-w+2 x+y=0 \\
u+2 v+4 w+2 x=0 \\
2 u+8 v+w+3 x-y=0
\end{array}\right.
$$

What is the dimension of this subspace?
10. $3 x+2 y-z=0$ is the equation of a plane \mathcal{P} in \mathbb{R}^{3} that passes through the origin, so \mathcal{P} is a subspace of \mathbb{R}^{3}. Find a basis for \mathcal{P}. What is the dimension of this subspace?
11. Let $A=\left(\begin{array}{rrrrr}1 & -1 & 1 & 0 & -2 \\ 2 & 0 & 1 & 1 & -1 \\ 1 & -3 & 2 & -1 & -5\end{array}\right)$
(a) Find a basis for the column space of A.
(b) Find a basis for the null space of A.
(c) Is $(1,1,1)$ in the column space of A ?
12. Let $B=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & -3 \\ 3 & 1 & 5 \\ 2 & -1 & 5\end{array}\right)$
(a) Find a basis for the column space of B.
(b) Find a basis for the column space of B^{\prime}.
(c) Is $(1,3,-1,-4)$ in the column space of B ?
13. Find a basis for the subspace of \mathbb{R}^{4} spanned by $(1,-1,5,-5),(1,1,-1,1)$, and $(2,1,1,-1)$. What is the dimension of this subspace?
14. Find a basis for the subspace of \mathbb{R}^{4} spanned by $(1,-1,1,2),(1,1,-1,1)$, and $(2,1,1,-1)$. What is the dimension of this subspace?
15.

$$
C=\left(\begin{array}{rrrr}
1 & 0 & 3 & -1 \\
0 & 1 & 1 & 2 \\
2 & -1 & 5 & -4
\end{array}\right)
$$

(a) What is the dimension of $\mathcal{N}(C)$, the null space of C ? What is the rank of C ? What is the rank of C^{\prime} ? What is the dimension of $\mathcal{N}\left(C^{\prime}\right)$?
(b) Find bases for the range of C, the range of C^{\prime}, and the nullspace of C^{\prime}.
(c) Is the equation $C X=(2,3,1)$ solvable?
(d) Is the equation $C X=(-1,1,3)$ solvable?
(e) Is the equation $C^{\prime} X=(1,-1,2,-3)$ solvable?
16. Find bases for the range and the nullspace, and find the dimensions of these subspaces.

$$
\left(\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
2 & 1 & 0 & 1 \\
1 & 1 & 3 & 1 \\
0 & -1 & 4 & 0
\end{array}\right)
$$

17. Find the general solution of the system, and find two explicit solutions, if the system has infinitely many solutions:

$$
\left\{\begin{array}{rlr}
u+2 v+w-x-2 y & = & 3 \\
-2 u+v+w+x+2 y & = & 5 \\
u+v-w+2 x+4 y & = & -2 \\
u-v+3 x+y & = & -7 \\
-u+3 v+w+x+3 y & = & 7
\end{array}\right.
$$

18. Find the general solution of the system, and find two explicit solutions, if the system has infinitely many solutions:

$$
\left\{\begin{aligned}
a+b+4 c+d+e & =8 \\
a-b+2 c+2 d+e & =1 \\
2 a+b-c-d-2 e & =4 \\
b+3 c+d+e & =5 \\
2 a-b+c+3 d & =0
\end{aligned}\right.
$$

