DUE Thursday, 24 March:

(A) Find a formula $T((a, b))=(?, ?)$ for the linear transformation on \mathbb{R}^{2} that satisfies $T((2,1))=(2,1)$ and $T((1,-2))=(0,0)$. Can you identify this transformation geometrically?
(B) Explain why there is no linear transformation on \mathbb{R}^{2} that satisfies $T((2,1))=(3,-1)$ $T((1,-2))=(1,1)$, and $T((1,1))=(2,0)$. Can you find a (non-linear) continuous function of \mathbb{R}^{2} into itself that satisfies these conditions?
(C) In the vector space \mathbb{R}^{2}, let R be the linear transformation of reflection in the y-axis and S be the transformation of reflection through the line $x=y$. Find matrices for R and S with respect to the usual basis.
(D) Let $T: \mathbb{C}^{3} \longrightarrow \mathbb{C}^{2}$ be defined by $T((x, y, z))=(x+2 y-z,-2 x-4 y+2 z)$.
(a) Find the matrix for T with respect to the usual bases.
(b) Find a basis for the kernel of T.
(c) Find a basis for the range of T.
(E) Let $v_{1}=(1,2)$ and let $v_{2}=(2,3)$, and let S be the linear transformation on \mathbb{C}^{2} defined by $S\left(v_{1}\right)=-v_{1}+4 v_{2}$ and $S\left(v_{2}\right)=v_{1}-v_{2}$.
(a) Find the matrix for S with respect to the basis $\left\{v_{1}, v_{2}\right\}$.
(b) Let $w=v_{1}+3 v_{2}$. Find $S(w)$, and express your answer in terms of v_{1} and v_{2}.
(c) Find the matrix for S with respect to the standard basis.
(d) Express $S(w)$ in terms of the standard basis.
(F) Let \mathcal{V} be the subspace of \mathcal{C} whose basis is the set of functions $1, \sin x, \cos x, \sin 2 x$, and $\cos 2 x$. (Recall \mathcal{C} is the vector space of continuous functions on $[-\pi, \pi]$.) Find the matrix for the differentiation operator with respect to this basis.
(G) Let B be the linear transformation on \mathbb{C}^{3} of multiplication by the matrix

$$
\left(\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & -2 \\
3 & -1 & 2
\end{array}\right)
$$

(a) What is the matrix for the linear transformation B with respect to the usual basis?
(b) What is the matrix for the linear transformation B with respect to the basis $u_{1}=(1,-1,2), u_{2}=(-1,2,-1)$, and $u_{3}=(0,2,1)$?
(H) Letting u_{1}, u_{2}, u_{3} be the basis of Exercise (G), let L be the linear transformation on \mathbb{C}^{3} given by $L u_{1}=2 u_{1}+u_{2}-u_{3}, L u_{2}=-u_{2}+3 u_{3}$, and $L u_{3}=-4 u_{3}$.
(a) What is the matrix for the linear transformation L with respect to the basis u_{1}, u_{2}, u_{3} ?
(b) What is the matrix for the linear transformation L with respect to the usual basis?

