For discussion Thursday, 13 January:

Please look over the material in chapters 1, 2, 3 (sections 3.1 - 3.6), and 4 (sections 4.2 - 4.4), most of which is familiar to you. Be prepared to ask any questions you might have on this material. In addition, please do the following problems; they will not be collected, but you may wish to ask questions about the ones you find difficult.

- page 37: 1, 2, 3, 4, 5
- page 107: 9 (Note that the answer to problem 5 is det(E) = -142.)
- page 167: 1, 2, 3, 4, 5
- page 192: 19

In addition, do the following problems:

- **A.** Let A be a 20×20 matrix that has block form $A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$ where B is 4×15 and C is 4×5 .
 - (a) What are the sizes of the 0 in the lower left corner and the matrix D?
 - (b) Show that the rank of A is less than or equal to 9.
 - (c) Show that the result of (b) is best possible by giving an example of such a matrix A that has rank exactly 9, that is, find matrices B, C, and D as above so that the resulting matrix Ahas rank exactly 9.
- **B.** The vectors q_1 , q_2 , and q_3 are an orthogonal basis for the subspace \mathcal{W} of \mathbf{R}^4 , and satisfy $||q_1|| = \sqrt{3}$, $||q_2|| = \sqrt{2}$, $||q_3|| = 2$.

In terms of this basis, vectors u, v, and w are expressed as

$$u = q_1 - 2q_2 + q_3$$

$$v = 2q_1 + q_2 - 3q_3$$

$$w = 2q_1 + q_2 + 2q_3$$

- (a) Find ||u||.
- (b) Find $\langle v, w \rangle$.
- (c) Show that the vectors u, v, and w are linearly independent.