For discussion Wednesday, 13 January:

Please look over the material in chapters 1, 2, 3 (sections $3.1-3.6$), and 4 (sections $4.2-4.4$), most of which is familiar to you. Be prepared to ask any questions you might have on this material. In addition, please do the following problems; they will not be collected, but you may wish to ask questions about the ones you find difficult.

- page 37: 1, 2, 3, 4, 5
- page 107: 9 (Note that the answer to problem 5 is $\operatorname{det}(E)=-142$.)
- page 167: 1, 2, 3, 4, 5
- page 192: 19

In addition, do the following problems:
A. Let A be a 20×20 matrix that has block form $A=\left(\begin{array}{rr}B & C \\ 0 & D\end{array}\right)$ where B is 4×15 and C is 4×5.
(a) What are the sizes of the 0 in the lower left corner and the matrix D ?
(b) Show that the rank of A is less than or equal to 9 .
(c) Show that the result of (b) is best possible by giving an example of such a matrix A that has rank exactly 9 , that is, find matrices B, C, and D as above so that the resulting matrix A has rank exactly 9 .
B. The vectors q_{1}, q_{2}, and q_{3} are an orthogonal basis for the subspace \mathcal{W} of \mathbf{R}^{4}, and satisfy $\left\|q_{1}\right\|=\sqrt{3},\left\|q_{2}\right\|=\sqrt{2},\left\|q_{3}\right\|=2$.
In terms of this basis, vectors u, v, and w are expressed as

$$
\begin{aligned}
u & =q_{1}-2 q_{2}+q_{3} \\
v & =2 q_{1}+q_{2}-3 q_{3} \\
w & =2 q_{1}+q_{2}+2 q_{3}
\end{aligned}
$$

(a) Find $\|u\|$.
(b) Find $\langle v, w\rangle$.
(c) Show that the vectors u, v, and w are linearly independent.

