Homework 8

1. In \mathbf{R}^{3} with the usual inner product; for $v=(2,1,-1)$ and $w=(1,-1,1)$, find $\langle v, w\rangle$.
2. In \mathbf{R}^{4} with the usual inner product; for $v=(1,1,2,-2)$ and $w=(2,0,1,1)$, find $\langle v, w\rangle$.
3. In \mathbf{R}^{4} with the usual inner product; for $v=(3,0,1,-1)$ and $w=(1,-2,1,-1)$, find $\langle v, w\rangle$.

In each of the following, find the angle between v and w. (Use the usual inner product.)
4. $v=(3,2,-1)$ and $w=(1,0,-2)$.
5. $v=(2,-1,2)$ and $w=(4,4,-2)$.
6. $v=(1,-1,2,0)$ and $w=(3,-1,-1,5)$.
7. Let $u=(1,-2,1,3)$ and $v=(2,1,-2,1)$. Find $\|u\|,\|v\|$, and $\|u+v\|$ and observe that $\|u+v\| \leq$ $\|u\|+\|v\|$.
8. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides. If u and v are vectors that form the sides of a parallelogram, then the diagonals are $u+v$ and $u-v$. Prove the vector form of the Parallelogram Law

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

