1. Find the inverse of $\left(\begin{array}{rrr}1 & -1 & 3 \\ 4 & 0 & -1 \\ -3 & 1 & 2\end{array}\right)$ by using determinants and the "Adjugate Formula".
2. Use Cramer's Rule to solve the system $\left\{\begin{array}{rlr}-y+z & = & -4 \\ -x+3 y+3 z & = & 4 \\ 2 x+3 z & = & 1\end{array}\right.$
3. Let $\mathcal{W}=\{(s, 0, t, 2 s+3 t): s, t$ real $\}$. Show that \mathcal{W} is a subspace of \mathbb{R}^{4}.
4. Let $\mathcal{U}=\{(s, 3, t, 2 s+3 t): s, t$ real $\}$. Show that \mathcal{U} is not a subspace of \mathbb{R}^{4}.
5. Show that the system

$$
\left\{\begin{aligned}
w+2 x-y+z & =2 \\
3 x-2 y+2 z & =4 \\
2 w-x+y-z & =-1
\end{aligned}\right.
$$

has infinitely many solutions but that the set of solutions of this system does not form a subspace of \mathbb{R}^{4}.
6. Show that the set \mathcal{W} of Exercise 3 is the range of the matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right)
$$

which means that \mathcal{W} is a subspace by the Example from class.
7. Let $\mathcal{Z}=\{(2 s+t, s,-s+3 t, t): s, t$ real $\}$. Find a matrix A as in Exercise 6 to show that \mathcal{Z} is a subspace of \mathbb{R}^{4} by the Example from class.
8. Let $\mathcal{V}=\{(s-t,-s+3 t, s, t): s, t$ real $\}$. Show that \mathcal{V} is a subspace of \mathbb{R}^{4} by showing it is the nullspace of the matrix

$$
A=\left(\begin{array}{rrrr}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & -3
\end{array}\right)
$$

and using the result of the Example from class.
9. Write $(1,-1,5,-5)$ as a linear combination of the vectors $(1,1,-1,1)$, and $(2,1,1,-1)$ or explain why it is not possible to do so.
10. Write $(1,-1,1,2)$ as a linear combination of the vectors $(1,1,-1,1)$, and $(2,1,1,-1)$ or explain why it is not possible to do so.
11. Find vectors that span $\mathcal{N}(B)$ the nullspace of the matrix $B=\left(\begin{array}{cccc}1 & 1 & 1 & -2 \\ 2 & 3 & 0 & -1\end{array}\right)$
12. Find vectors that $\operatorname{span} \mathcal{N}(C)$ the nullspace of the matrix $C=\left(\begin{array}{rrrr}1 & -1 & 0 & 2 \\ 2 & 1 & 1 & 0 \\ 3 & 0 & 1 & 2\end{array}\right)$
13. Find vectors that span $\mathcal{R}(C)$, the range of the matrix $C=\left(\begin{array}{rrrr}1 & -1 & 0 & 2 \\ 2 & 1 & 1 & 0 \\ 3 & 0 & 1 & 2\end{array}\right)$

