1. Let $A=\left(\begin{array}{rrr}4 & 3 & -2 \\ 2 & -5 & 6\end{array}\right)$ and let $B=\left(\begin{array}{rrr}0 & -1 & 3 \\ 2 & -1 & 6 \\ 5 & 2 & 1\end{array}\right)$
(a) Find $A B$ (from the definition) as a 2×3 matrix.
(b) Partition A as $\left(A_{11} \mid A_{12}\right)$ and B as $\left(\begin{array}{l|l}B_{11} & B_{12} \\ \hline B_{21} & B_{22}\end{array}\right)$, where both A_{11} and B_{11} are 2×2 matrices, that is, say what each of $A_{11}, A_{12}, \cdots, B_{22}$ are.
(c) Determine each of the relevant products from (b) above and find $A B$ as a partitioned matrix.
2. Explore how your software handles block matrices.
(a) Enter the matrices

$$
\begin{aligned}
A=\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & -1 & 4
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -1 \\
3 & 1
\end{array}\right) \\
C=\left(\begin{array}{rrr}
4 & 2.6 & 0 \\
3 & -.3 & 8
\end{array}\right), \quad D=\left(\begin{array}{rr}
3 & -2 \\
1.5 & 4
\end{array}\right)
\end{aligned}
$$

(b) Make a 4×5 matrix E from the matrices A, B, C, and D to get

$$
E=\left(\begin{array}{rrr|rr}
1 & 2 & -1 & 1 & -1 \\
0 & -1 & 4 & 3 & 1 \\
\hline 4 & 2.6 & 0 & 3 & -2 \\
3 & -.3 & 8 & 1.5 & 4
\end{array}\right)
$$

You probably do not need to retype all the entries! Note that $E=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$
(c) Make a 4×4 matrix F from E by deleting the last column of E.
3. Show that if A is an $m \times n$ matrix and B is an $n \times p$ matrix whose $k^{t h}$ column is zero, then the $k^{t h}$ column of $A B$ is zero.
4. Suppose A is a square matrix partitioned as

$$
A=\left(\begin{array}{c|c}
X & Y \\
\hline 0 & Z
\end{array}\right)
$$

where X and Z are square invertible matrices and 0 is a zero matrix.
(a) Find formulas for P, Q, R, and S so that the block matrix

$$
\left(\begin{array}{c|c}
P & Q \\
\hline R & S
\end{array}\right)
$$

is A^{-1}. (Caution: matrix multiplication is not commutative!) If you are successful, you will have shown that matrices with the given block form are invertible.
(b) Use your formula to find A^{-1} when $X=\left(\begin{array}{l}-1\end{array}\right), Y=\left(\begin{array}{ll}1 & -1\end{array}\right)$, and $Z=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$ (Note that $Z^{-1}=\left(\begin{array}{rr}3 & -1 \\ -2 & 1\end{array}\right)$)

Find the determinants of the following matrices.
5. $A=\left(\begin{array}{rrr}-2 & 0 & 1 \\ 3 & 4 & -2 \\ 5 & 3 & -1\end{array}\right)$
8. $D=\left(\begin{array}{rrrr}0 & 0 & 3 & -1 \\ 1 & 2 & -1 & 1 \\ -2 & -2 & 3 & -5 \\ 1 & 6 & -8 & -4\end{array}\right)$
6. $B=\left(\begin{array}{rrrr}1 & 2 & 0 & 1 \\ -2 & -2 & -1 & 1 \\ 2 & 2 & 4 & 0 \\ 3 & 6 & 3 & 3\end{array}\right)$
9. $E=\left(\begin{array}{rrrr}-1 & 3 & -4 & 2 \\ 0 & -1 & 1 & 3 \\ 3 & 0 & -2 & -1 \\ 2 & -1 & 4 & 3\end{array}\right)$
7. $C=\left(\begin{array}{rrrr}1 & 1 & -2 & 1 \\ -1 & 4 & 3 & -2 \\ 0 & 5 & 3 & 0 \\ -2 & 3 & 7 & 1\end{array}\right)$
10. $F=\left(\begin{array}{rrrrr}0 & 0 & -4 & 0 & 0 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & -2 & -1 & 4 & -3 \\ 2 & -1 & 4 & 3 & 0 \\ -2 & 3 & -9 & -11 & 10\end{array}\right)$

