Homework 14

1. A is a 3×3 matrix;
the vector u is an eigenvector of A with eigenvalue -1 ;
the vector v is an eigenvector of A with eigenvalue 2;
and the vector w is an eigenvector of A with eigenvalue 5 .
(a) Evaluate: $\left(A^{2}+4 A-I\right)(u)$.
(b) Evaluate: $\left(A^{2}+4 A-I\right)(v)$.
(c) Evaluate: $\left(A^{2}+4 A-I\right)(w)$.
(d) Evaluate: $\left(A^{2}+4 A-I\right)(3 u-2 v+w)$.
2. Let B be an $n \times n$ matrix whose eigenvalues are $1,2,-3$, and 3 .

Find the four eigenvalues of $B^{2}-B+3 I$.
3. Let C be an $n \times n$ matrix that is invertible, let λ be an eigenvalue of C, and let x be an eigenvector of C corresponding to λ. Show that $\lambda \neq 0$ and that λ^{-1} is an eigenvalue of C^{-1} with eigenvector x.
4. If w is an eigenvector of B (of Exercise 2 above) corresponding to the eigenvalue 2, find $(B-5 I)^{-1} w$.
5. Suppose N is an $n \times n$ matrix such that $N^{k}=0$ for some positive integer k.

Find the eigenvalues of N.
6. Suppose P is a matrix such that $P=P^{2}$. Find the eigenvalues of P.
7. Find an invertible matrix S and a diagonal matrix D so that $D=S^{-1} R S$ where

$$
R=\left(\begin{array}{rr}
3 & -2 \\
-1 & 4
\end{array}\right)
$$

8. Find an invertible matrix S and a diagonal matrix D so that $D=S^{-1} A S$ where

$$
A=\left(\begin{array}{rrr}
-6 & -4 & 1 \\
6 & 5 & 0 \\
-8 & -4 & 3
\end{array}\right)
$$

9. Find an invertible matrix S and a diagonal matrix D so that $D=S^{-1} B S$ where

$$
B=\left(\begin{array}{rrr}
5 & -4 & 4 \\
2 & -1 & 2 \\
-1 & 1 & 0
\end{array}\right)
$$

10. Do the necessary calculations, then explain why it is not possible to diagonalize the matrix

$$
J=\left(\begin{array}{rrr}
0 & -3 & -7 \\
1 & 5 & 10 \\
-1 & -2 & -3
\end{array}\right)
$$

