Homework 11

- 1. Let M be the subspace of \mathbb{R}^4 spanned by $v_1 = (1, 1, 0, 0); v_2 = (0, 1, 1, 0); v_3 = (0, 0, 1, 1);$ and $v_4 = (1, 0, 0, 1).$
 - (a) Use the Gram-Schmidt orthogonalization process to find an orthonormal basis for M.
 - (b) Extend the basis you found in part (a) to an orthonormal basis for all of \mathbb{R}^4 .
 - (c) Is w = (1, -1, 0, 1) in M? (Justify your answer.)

2. Let $C = \begin{pmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 1 & 2 \\ 2 & -1 & 5 & -4 \end{pmatrix}$ (Compare with problems from Homework 7).

- (a) Find an orthonormal basis for the nullspace of C.
- (b) Find an orthonormal basis for the range of C'.
- (c) Find the angles between the vectors you found in parts (a) and (b).
- (d) Find an orthonormal basis for the nullspace of C'.
- (e) Find an orthonormal basis for the range of C.
- (f) What do you notice about your answers to parts (d) and (e).
- 3. Let *M* be the subspace of \mathbb{R}^4 spanned by (2, 1, 0, -1), (1, 1, 1, 0), and (-1, 0, 1, 1). Find *w* in *M* and *u* in M^{\perp} so that w + u = (3, 1, 0, 0).
- 4. Let \mathcal{W} be the subspace of \mathbb{R}^5 spanned by (1, 1, 0, -1, 1), (0, 2, -1, 1, 1), and (-1, 1, 1, -2, 1). Find w in \mathcal{W} and u in \mathcal{W}^{\perp} so that w + u = (1, 1, -1, 1, 1).
- 5. The matrix B is an 8×11 matrix and the dimension of $\mathcal{N}(B)$, the nullspace of B, is 5.
 - (a) What is the dimension of $\mathcal{R}(B)$, the range of B?
 - (b) What is the dimension of $\mathcal{R}(B')$, the range of B'?
 - (c) What is the dimension of $\mathcal{N}(B')$, the nullspace of B'?
 - (d) What is the dimension of $\mathcal{R}(B')^{\perp}$, the orthogonal complement of $\mathcal{R}(B')$?
- 6. An $n \times n$ matrix U is called *unitary* if $U' = U^{-1}$.
 - (a) Show U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^n .
 - (b) Show that if U is unitary, then U^{-1} is also unitary.
 - (c) Show that if U is a real unitary matrix, the map $x \mapsto Ux$ is a rigid motion of \mathbb{R}^n by showing that if U is unitary and v and w are vectors in \mathbb{R}^n , then
 - (i) $\langle Uv, Uw \rangle = \langle v, w \rangle$,
 - (ii) ||Uv|| = ||v||,
 - (iii) the angle between Uv and Uw is the same as the angle between v and w.
- 7. Find the general solution of the system and find three explicit solutions

 $\begin{cases} a - b + 2c + e = 0\\ -a + 2b - 3c + 2d - e = 1\\ a - 2b + 4c - d + 2e = -1\\ -2a + 3b - 2c + 5d + e = 1 \end{cases}$

- 8. Let *M* be the subspace of \mathbb{R}^5 spanned by $w_1 = (1, 1, 0, -1, 1), w_2 = (1, 0, 2, 0, -1)$, and $w_3 = (0, 1, 1, 1, -1)$. Find vectors *w* in *M* and *u* in M^{\perp} so that (1, 0, 0, 1, 1) = w + u.
- 9. Let *M* be the subspace of \mathbb{R}^5 spanned by (2, 1, 0, -1, 1), (1, 1, 1, 0, 2), and (-1, 0, 1, 1, 1). Find *w* in *M* and *u* in M^{\perp} so that w + u = (3, 1, 0, 0, -1).