Homework 10

1. (a) Use the Theorem on orthogonal sets to show that the vectors $w_{1}=(1,1,0), w_{2}=(1,-1,1)$, and $w_{3}=(-1,1,2)$ are a basis for \mathbb{R}^{3}.
(b) Use the corresponding expansion theorem to write $v=(2,-1,3)$ as a linear combination of w_{1}, w_{2}, and w_{3}.
2. The vectors $u_{1}, u_{2}, u_{3}, u_{4}$ are orthogonal vectors that span the subspace \mathcal{U} of \mathbb{R}^{11}.

Moreover, $\left\|u_{1}\right\|=1, \quad\left\|u_{2}\right\|=2, \quad\left\|u_{3}\right\|=3$, and $\left\|u_{4}\right\|=1$.
(a) What is the dimension of the subspace \mathcal{U} ?
(b) Find $\|v\|$ for $v=3 u_{1}-2 u_{2}+4 u_{3}-u_{4}$?
3. The vectors u, v, and w are in \mathbb{R}^{n} and we are given that $\|u\|=1,\|v\|=2,\|w\|=3$, that $\langle u, v\rangle=-1$, $\langle u, w\rangle=2$, and that w is perpendicular to v.
(a) Find $\|u-3 v+2 w\|$.
(b) Show that u, v, and w are linearly independent.
4. (a) Show that $v_{1}=(1,1,1,1) ; v_{2}=(1,1,-1,-1) ; v_{3}=(1,-1,1,-1)$; and $v_{4}=(1,-1,-1,1)$ form an orthogonal basis for \mathbb{R}^{4}.
(b) Write $w=(2,1,-1,2)$ as a linear combination of v_{1}, v_{2}, v_{3}, and v_{4}.
5. (a) Show that $v_{1}=(1,-1,1)$ and $v_{2}=(3,2,-1)$ are orthogonal vectors in \mathbb{R}^{3}.
(b) Is $w=(2,1,-1)$ in the subspace spanned by v_{1} and v_{2} ?
(c) Find a non-zero vector in \mathbb{R}^{3} that is perpendicular to each of v_{1} and v_{2}.
6. (a) Show that $v_{1}=(1,0,1,1) ; v_{2}=(1,1,-1,0)$; and $v_{3}=(1,-1,0,-1)$ are orthogonal vectors in \mathbb{R}^{4}.
(b) Is $w=(6,-1,2,1)$ in the subspace spanned by v_{1}, v_{2}, and v_{3} ?
(c) Find a non-zero vector in \mathbb{R}^{4} that is perpendicular to each of v_{1}, v_{2}, and v_{3}.
7. The vectors $v_{1}=(1,1,-1) ; v_{2}=(2,1,2)$; and $v_{3}=(2,-1,-1)$ are a basis for \mathbb{R}^{3}. Use the GramSchmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^{3}.
8. The vectors $v_{1}=(1,1,-1,1) ; v_{2}=(1,0,1,2) ; v_{3}=(1,-2,-1,0)$; and $v_{4}=(0,2,1,-1)$ are a basis for \mathbb{R}^{4}. Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^{4}.
9. The vectors $v_{1}=(1,0,-1)$ and $v_{2}=(2,1,-1)$ span the subspace \mathcal{U} in \mathbb{R}^{3}. Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{U}.
10. The vectors $v_{1}=(1,0,-1,1) ; v_{2}=(2,1,1,-1)$; and $v_{3}=(1,-1,-1,0)$ span the subspace \mathcal{W} in \mathbb{R}^{4}. Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{W}.
11. Let \mathcal{W} be the hyperplane (i.e. 3 dimensional subspace) in \mathbb{R}^{4} with equation $2 a+b-c+2 d=0$. Find an orthonormal basis for \mathcal{W}.

