Math 35100 (Cowen)

Homework 10

- 1. (a) Use the Theorem on orthogonal sets to show that the vectors $w_1 = (1, 1, 0)$, $w_2 = (1, -1, 1)$, and $w_3 = (-1, 1, 2)$ are a basis for \mathbb{R}^3 .
 - (b) Use the corresponding expansion theorem to write v = (2, -1, 3) as a linear combination of w_1 , w_2 , and w_3 .
- 2. The vectors u_1, u_2, u_3, u_4 are orthogonal vectors that span the subspace \mathcal{U} of \mathbb{R}^{11} . Moreover, $||u_1|| = 1$, $||u_2|| = 2$, $||u_3|| = 3$, and $||u_4|| = 1$.
 - (a) What is the dimension of the subspace \mathcal{U} ?
 - (b) Find ||v|| for $v = 3u_1 2u_2 + 4u_3 u_4$?
- 3. The vectors u, v, and w are in \mathbb{R}^n and we are given that ||u|| = 1, ||v|| = 2, ||w|| = 3, that $\langle u, v \rangle = -1$, $\langle u, w \rangle = 2$, and that w is perpendicular to v.
 - (a) Find ||u 3v + 2w||.
 - (b) Show that u, v, and w are linearly independent.
- 4. (a) Show that $v_1 = (1, 1, 1, 1)$; $v_2 = (1, 1, -1, -1)$; $v_3 = (1, -1, 1, -1)$; and $v_4 = (1, -1, -1, 1)$ form an orthogonal basis for \mathbb{R}^4 .
 - (b) Write w = (2, 1, -1, 2) as a linear combination of v_1, v_2, v_3 , and v_4 .
- 5. (a) Show that $v_1 = (1, -1, 1)$ and $v_2 = (3, 2, -1)$ are orthogonal vectors in \mathbb{R}^3 .
 - (b) Is w = (2, 1, -1) in the subspace spanned by v_1 and v_2 ?
 - (c) Find a non-zero vector in \mathbb{R}^3 that is perpendicular to each of v_1 and v_2 .
- 6. (a) Show that $v_1 = (1, 0, 1, 1)$; $v_2 = (1, 1, -1, 0)$; and $v_3 = (1, -1, 0, -1)$ are orthogonal vectors in \mathbb{R}^4 .
 - (b) Is w = (6, -1, 2, 1) in the subspace spanned by v_1, v_2 , and v_3 ?
 - (c) Find a non-zero vector in \mathbb{R}^4 that is perpendicular to each of v_1 , v_2 , and v_3 .
- 7. The vectors $v_1 = (1, 1, -1)$; $v_2 = (2, 1, 2)$; and $v_3 = (2, -1, -1)$ are a basis for \mathbb{R}^3 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^3 .
- 8. The vectors $v_1 = (1, 1, -1, 1)$; $v_2 = (1, 0, 1, 2)$; $v_3 = (1, -2, -1, 0)$; and $v_4 = (0, 2, 1, -1)$ are a basis for \mathbb{R}^4 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^4 .
- 9. The vectors $v_1 = (1, 0, -1)$ and $v_2 = (2, 1, -1)$ span the subspace \mathcal{U} in \mathbb{R}^3 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{U} .
- 10. The vectors $v_1 = (1, 0, -1, 1)$; $v_2 = (2, 1, 1, -1)$; and $v_3 = (1, -1, -1, 0)$ span the subspace \mathcal{W} in \mathbb{R}^4 . Use the Gram–Schmidt orthogonalization process to create an orthonormal basis for \mathcal{W} .
- 11. Let \mathcal{W} be the hyperplane (i.e. 3 dimensional subspace) in \mathbb{R}^4 with equation 2a + b c + 2d = 0. Find an orthonormal basis for \mathcal{W} .