Homework 1

1. Let u = (1, -1, 3), v = (0, 2, -1), and w = (3, 1, 1). Evaluate the following expressions: (a) 4u (b) -3v (c) u + w (d) 4u - 3v (e) 2u - 4v + 3w

2. Let u = (2, 1, 0, -3), v = (1, 0, 3, -1), and w = (2, 0, 6, -2). Evaluate the following expressions: (a) 3u - 2v (b) 2u + v - 3w (c) $\alpha u + \beta v + \gamma w$

- 3. Let u, v, and w be vectors as in the previous problem.
 - (a) Find α and β , if possible, so that $\alpha u + \beta v = (1, 2, -9, -3)$.
 - (b) Find α and β , if possible, so that $\alpha u + \beta w = (3, -1, 2, 0)$.
 - (c) Find α and β , if possible, so that $\alpha v + \beta w = (-1, 0, -3, 1)$.

4. Let
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$$
 and $N = \begin{pmatrix} -1 & 0 & 4 \\ 1 & 1 & -2 \end{pmatrix}$. Evaluate the following expressions.
(a) $3M - 2N$ (b) M' (c) $3M' - 2N'$ (d) $(3M - 2N)'$

5. Show that if E is square, then E + E' is Hermitian.

6. Let
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$$
 and $N = \begin{pmatrix} -1 & 0 & 4 \\ 1 & 1 & -2 \end{pmatrix}$.
Evaluate the following expressions.
(a) MM' (b) $M'M$ (c) MN' (d) $N'M$

7. Let
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 0 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -3 \\ -1 & 3 \\ -1 & 3 \end{pmatrix}$,

 $D = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, and $E = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$. Evaluate the following expressions when possible; say

Undefined when the arithmetic in the expression cannot be carried out.

(a)
$$3A - 2B$$
 (b) AE (c) AB (d) AC (e) CA
(f) EA (g) $E'A$ (h) $AB' + D$ (i) A^2 (j) D^2

8. Let $A = \begin{pmatrix} 5 & -4 & 1 \\ 12 & -11 & 6 \\ 10 & -10 & 8 \end{pmatrix}$ and $u = (1, -1, 2), v = (1, 1, 0), w = (1, 2, 1), e_1 = (1, 0, 0), and e_2 = (0, 1, 0).$ (a) Find Au. (b) Find Av.

- (b) Find Av.
- (c) Find Aw.

(d) Find Ae_1 and Ae_2 . Let $e_3 = (0, 0, 1)$; guess what Ae_3 is, then compute it.

9. Let
$$S = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 1 & 3 \\ -1 & 3 & -2 \end{pmatrix}$$
.

(a) Find S', S^2 , and S^3 .

- (b) What special property do S, S^2 , and S^3 have?
- (c) Show that if T is any Hermitian matrix, then T^2 is Hermitian also.

10. Let
$$P = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -2 \\ 5 & 3 & -5 \end{pmatrix}$, and let D be the diagonal matrix $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
(a) Find DP and DQ .

- (b) If E is the diagonal matrix with diagonal entries α , β , and γ , and R is a matrix, describe ER.
- (c) Find PD and QD.
- (d) If E is the diagonal matrix with diagonal entries α , β , and γ , and R is a matrix, describe RE.

11. Let
$$S = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$
 and let $T = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & -2 \end{pmatrix}$.
Let $C_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, let $C_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, and let $C_3 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

- (a) Find SC_1 , SC_2 , and SC_3 .
- (b) Find ST and compare your answer with the results of part a).

12. (a) Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 2 \\ 2 & -1 & 1 \end{pmatrix}$$
 and let $B = \begin{pmatrix} -4 & -1 & 2 \\ -5 & -1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$.
Explain why $A = B^{-1}$.
(b) Is $B = A^{-1}$? Explain!
(c) Let $C = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$, and $D = \begin{pmatrix} -2 & 1 \\ -3 & 1 \\ 1 & 1 \end{pmatrix}$. Is $D = C^{-1}$? Explain!

13. Redo Exercise 7 and Exercise 12 above using a suitable machine. How does your machine react to undefined matrix operations?

14. Verify that if N is a matrix such that $N^4 = 0$, then

$$(I - N)^{-1} = I + N + N^2 + N^3$$

WARNING! Such matrices are called *nilpotent* and are **not** necessarily 0.

For example, the matrix
$$M = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
 satisfies $M^2 = 0$.

15. Let E be an $m \times n$ matrix.

- (a) Show that EE' and E'E are both Hermitian.
- (b) Give an example to show that these are not always the same.

16.

$$F = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3 \\ 4 & 2.6 & 0 & 3 \\ 3 & -.3 & 8 & 1.5 \end{pmatrix}$$

- (a) Use a suitable machine to find $G = F^{-1}$
- (b) Find the computed values of GF and GF I. Explain the output of your machine.