Homework 7

For each of the following sets of vectors, decide if they span \mathbb{R}^{3}. If they do, show that they do. If they do not, find a vector that is not in the subspace spanned by the vectors.

1. $\{(1,-1,0),(3,1,0)\}$
2. $\{(1,0,0),(-2,1,0),(1,1,-1)\}$
3. $\{(2,1,-1),(1,0,-1),(1,1,0),(0,1,1)\}$
4. Let A be an $m \times n$ matrix and let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in \mathbb{R}^{n}. Show that if $A v_{1}, A v_{2}, \ldots, A v_{k}$ are linearly independent vectors in \mathbb{R}^{m}, then $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent in \mathbb{R}^{n}.
5. (a) Let A be an invertible $m \times m$ matrix and let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in \mathbb{R}^{m}. Show that if v_{1}, v_{2}, \ldots, v_{k} are linearly independent vectors in \mathbb{R}^{m}, then $A v_{1}, A v_{2}, \ldots, A v_{k}$ are also linearly independent.
(b) Find an example of a non-invertible $m \times m$ matrix B and linearly independent vectors w_{1}, w_{2}, \ldots, w_{k} so that $B w_{1}, B w_{2}, \ldots, B w_{k}$ are linearly dependent.
6. Find a basis for the solution space of the system:

$$
\left\{\begin{array}{r}
a+3 b-c+2 d=0 \\
2 a+2 b+c+2 d=0 \\
4 a+5 c-7 d=0
\end{array}\right.
$$

What is the dimension of this subspace?
7. Find a basis for the solution space of the system:

$$
\left\{\begin{array}{cc}
u+3 v-w+2 x+y= & 0 \\
u+2 v+4 w+2 x & =0 \\
2 u+8 v+w+3 x-y & =0
\end{array}\right.
$$

What is the dimension of this subspace?
8. $3 x+2 y-z=0$ is the equation of a plane \mathcal{P} in \mathbb{R}^{3} that passes through the origin, so \mathcal{P} is a subspace of \mathbb{R}^{3}. Find a basis for \mathcal{P}. What is the dimension of this subspace?
9. Let $F=\left(\begin{array}{rrr}1 & -2 & 1 \\ 1 & 1 & -3 \\ -1 & 8 & -9\end{array}\right)$
(a) Find a basis for the column space of F.
(b) Find a basis for the column space of F^{\prime}.
(c) Is $(1,1,1)$ in the column space of F ?
10. Let $A=\left(\begin{array}{rrrrr}1 & -1 & 1 & 0 & -2 \\ 2 & 0 & 1 & 1 & -1 \\ 1 & -3 & 2 & -1 & -5\end{array}\right)$
(a) Find a basis for the column space of A.
(b) Find a basis for the null space of A.
(c) Is $(1,1,1)$ in the column space of A ?
11. Let $B=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & -3 \\ 3 & 1 & 5 \\ 2 & -1 & 5\end{array}\right) \quad \begin{aligned} & \text { (a) Find a basis for the column space of } B \text {. } \\ & \text { (b) Find a basis for the column space of } B^{\prime} . \\ & \text { (c) Is }(1,3,-1,-4) \text { in the column space of } B \text { ? }\end{aligned}$
12. (a) Show that the vectors $(1,2,1),(-1,1,0)$, and $(2,0,0)$ are a basis for \mathbb{R}^{3}.
(b) Find the coordinates of $(0,0,1)$ with respect to this basis.
13. (a) The vectors $u=(2,1,-1), v=(1,1,0)$, and $w=(1,2,1)$ are linearly dependent in \mathbb{R}^{3}.
(b) Write $z=u+v-2 w=(1,-2,-3)$ as a linear combination of two or fewer of these vectors.
14. Find a basis for the subspace of \mathbb{R}^{4} spanned by $(1,-1,5,-5),(1,1,-1,1)$, and $(2,1,1,-1)$. What is the dimension of this subspace?
15. Find a basis for the subspace of \mathbb{R}^{4} spanned by $(1,-1,1,2),(1,1,-1,1)$, and $(2,1,1,-1)$. What is the dimension of this subspace?

For each of the following matrices, find bases for the range and the nullspace, and find the dimensions of these subspaces.
16. $\left(\begin{array}{rrrr}1 & -1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & -1 & 4 & 0\end{array}\right)$
17. $\left(\begin{array}{rrrr}1 & -1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & -1 & 1 \\ 3 & 3 & -1 & 2\end{array}\right)$

