Homework 2

1. (a) Let $A=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & 2 \\ 2 & -1 & 1\end{array}\right)$ and let $B=\left(\begin{array}{rrr}-4 & -1 & 2 \\ -5 & -1 & 2 \\ 3 & 1 & -1\end{array}\right)$. Explain why $A=B^{-1}$.
(b) Is $B=A^{-1}$? Explain!
(c) Let $C=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 1 & 1\end{array}\right)$, and $D=\left(\begin{array}{rr}-2 & 1 \\ -3 & 1 \\ 1 & 1\end{array}\right)$. Is $D=C^{-1}$? Explain!
2. Verify that if N is a matrix such that $N^{4}=0$, then

$$
(I-N)^{-1}=I+N+N^{2}+N^{3} .
$$

WARNING! Such matrices are called nilpotent and are not necessarily 0 . For example, the matrix $M=\left(\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right)$ satisfies $M^{2}=0$.
3. Let E be an $m \times n$ matrix.
(a) Show that $E E^{\prime}$ and $E^{\prime} E$ are both Hermitian.
(b) Give an example to show that these are not always the same.
4. Redo Exercise 7 from Homework 1 and Exercise 1 above using a suitable machine. How does your machine react to undefined matrix operations?
5.

$$
F=\left(\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
0 & -1 & 4 & 3 \\
4 & 2.6 & 0 & 3 \\
3 & -.3 & 8 & 1.5
\end{array}\right)
$$

(a) Use a suitable machine to find $G=F^{-1}$
(b) Find the computed values of $G F$ and $G F-I$. Explain the output of your machine.

Solve the following systems.
6. $\left\{\begin{aligned} 2 w-x+2 y+z & =1 \\ x+y-z & =-2 \\ 3 y+z & =0 \\ 2 z & =6\end{aligned} \quad\right.$ 7. $\left\{\begin{aligned} 2 w-x+2 y+z & =0 \\ x+y-z & =0 \\ y-z & =0\end{aligned}\right.$
(Hint: solve for w, x, and y in terms of z. There will be infinitely many solutions, one for each value of z.)
Use your software to solve the following systems. Be sure to check your answers!
8. $\left\{\begin{aligned} x-y+z & =1 \\ -x+3 y+3 z & =5 \\ 2 x+3 z & =4\end{aligned}\right.$
9. $\left\{\begin{aligned} w+2 x-y+3 z & =1 \\ 3 w+x+2 y+4 z & =8 \\ -x+y-z & =1\end{aligned}\right.$
10. $\left\{\begin{aligned} w+2 x-y+3 z & =1 \\ 3 w+x+2 y+4 z & =1 \\ -x+y-z & =2\end{aligned}\right.$
11. Consider the system:

$$
\left\{\begin{aligned}
u+2 v+w-x-2 y & =3 \\
-2 u+v+w+x+2 y & =5 \\
u+v-w+2 x+4 y & =-2 \\
u-v+3 x+y & =-7 \\
-u+3 v+w+x+3 y & =7
\end{aligned}\right.
$$

(a) Choose A and b so that the system can be written in matrix form as $A X=b$ where $X=(u, v, w, x, y)$.
(b) Check that $X_{p}=(-1,1,2,-2,1)$ is a solution of the system and check that $X_{0}=(-1,1,-2,1,-1)$ is a solution of the associated homogeneous system $A X=0$.
(c) Without using Gaussian elimination or a machine, find two other non-trivial solutions of $A X=0$.
(d) Without using Gaussian elimination or a machine, find two other solutions of $A X=b$.
12. The five-tuples $(2,2,1,-1,1)$ and $(1,1,2,-1,-1)$ are both solutions of the system:

$$
\left\{\begin{aligned}
a+b+4 c+d+e & =8 \\
a-b+2 c+2 d+e & =1 \\
2 a+b-c-d-2 e & =4 \\
b+3 c+d+e & =5 \\
2 a-b+c+3 d & =0
\end{aligned}\right.
$$

(a) Without using Gaussian elimination or a machine, write down two non-trivial solutions of the associated homogeneous system.
(b) Write down two other solutions of the given system.
13. Let A be the matrix

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
2 & 1 & -3 & -1 \\
1 & 1 & 3 & -2 \\
-1 & 2 & -2 & 3
\end{array}\right)
$$

and let $b=(3,-1,3,2)$ and let $c=(0,4,-4,4)$.
(a) Check that $Y=(1,1,1,1)$ solves the system $A X=b$ and that $Z=(1,0,-1,1)$ solves the system $A X=c$.
(b) Without using Gaussian Elimination or a machine, find a solution of the system $A X=$ $(6,-2,6,4)=2 b$.
(c) Without using Gaussian Elimination or a machine, find a solution of the system $A X=$ $(3,3,-1,6)=b+c$
(d) Without using Gaussian Elimination or a machine, find a solution of the system $A X=$ $(9,5,1,14)=3 b+2 c$.

