Homework 14

1. Find the eigenvalues of the matrix A below, and find an orthonormal basis for \mathbb{R}^{2} consisting of eigenvectors for A. What property of A guarantees that this is possible?

$$
A=\left(\begin{array}{rr}
1 & 2 \\
2 & -2
\end{array}\right)
$$

2. Let $B=\left(\begin{array}{rrr}1 & 4 & -2 \\ 4 & 1 & 2 \\ -2 & 2 & 4\end{array}\right)$

The characteristic polynomial of B is $p(\lambda)=-(\lambda-5)^{2}(\lambda+4)$. What are the eigenvalues of B ? Find an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors for B.
3. The numbers $-3,1$, and 5 are the eigenvalues of the matrix

$$
E=\left(\begin{array}{rrrr}
0 & -1 & -3 & 1 \\
-1 & 0 & 1 & -3 \\
-3 & 1 & 0 & -1 \\
1 & -3 & -1 & 0
\end{array}\right)
$$

Find an orthonormal basis for \mathbb{R}^{4} that consists of eigenvectors for E.
4. The 5×5 matrix S is Hermitian (self-adjoint) and v is an eigenvector for S with eigenvalue -3 . The vector w is perpendicular to v. Prove that $S w$ is also perpendicular to v.
5. The five-tuples $(2,2,1,-1,1)$ and $(1,1,2,-1,-1)$ are both solutions of the system:

$$
\left\{\begin{aligned}
a+b+4 c+d+e & =8 \\
a-b+2 c+2 d+e & =1 \\
2 a+b-c-d-2 e & =4 \\
b+3 c+d+e & =5 \\
2 a-b+c+3 d & =0
\end{aligned}\right.
$$

(a) Without using Gaussian elimination or a machine, write down two non-trivial solutions of the associated homogeneous system.
(b) Write down two other solutions of the given system.
6. In answering a question on her linear algebra homework, April claimed that the subspace \mathcal{W} is spanned by the set $u_{1}=(1,0,1)$ and $u_{2}=(0,1,-1)$. Michelle claimed that the subspace \mathcal{W} is spanned by $v_{1}=(1,1,0), v_{2}=(2,1,1)$, and $v_{3}=(1,-1,2)$. Do their answers agree with each other, that is, is the subspace spanned by the set $\left\{u_{1}, u_{2}\right\}$ the same as the subspace spanned by $\left\{v_{1}, v_{2}, v_{3}\right\} ?$
7. In answering a question on his linear algebra homework, Max claimed that the subspace \mathcal{U} is spanned by the set $u_{1}=(1,0,1,1), u_{2}=(0,1,-1,0)$ and $u_{3}=(0,0,1,2)$. Spike claimed that the subspace \mathcal{U} is spanned by $v_{1}=(1,1,0,1), v_{2}=(2,1,1,2)$, and $v_{3}=(1,-1,2,1)$. Do they agree with each other, that is, is the subspace spanned by the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ the same as the subspace spanned by $\left\{v_{1}, v_{2}, v_{3}\right\}$?
8. In doing his linear algebra homework, Eduardo found that if $u=(2,1,-3), v=(1,-1,2)$, and $w=(1,5,-12)$, then $2 u-3 v-w=0$. Does this calculation show that u, v, and w form a linearly dependent set, that they form a linearly independent set, or does it not show either of these?
9. In doing her linear algebra homework, Pauline was given that $p=(1,1,-3), q=(2,-1,2)$, and $r=(1,-2,5)$. She noticed that $0 p+0 q+0 r=0$. Does this observation show that p, q, and r form a linearly dependent set, that they form a linearly independent set, or does it not show either of these?
10. In doing their linear algebra homework, Abbie and John were given that $x=(2,-1,1), y=(1,0,2)$, and $z=(1,1,-3)$. They found that the system $c_{1} x+c_{2} y+c_{3} z=0$ has only one solution, namely, $c_{1}=0, c_{2}=0$, and $c_{3}=0$. Does this calculation show that u, v, and w form a linearly dependent set, that they form a linearly independent set, or does it not show either of these?
11. Let A be an $m \times n$ matrix and let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in \mathbb{R}^{n}. Show that if $A v_{1}, A v_{2}, \ldots, A v_{k}$ are linearly independent vectors in \mathbb{R}^{m}, then $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent in \mathbb{R}^{n}.
12. (a) Let A be an invertible $m \times m$ matrix and let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in \mathbb{R}^{m}. Show that if v_{1}, v_{2}, \ldots, v_{k} are linearly independent vectors in \mathbb{R}^{m}, then $A v_{1}, A v_{2}, \ldots, A v_{k}$ are also linearly independent.
(b) Find an example of a non-invertible $m \times m$ matrix B and linearly independent vectors w_{1}, w_{2}, \ldots, w_{k} so that $B w_{1}, B w_{2}, \ldots, B w_{k}$ are linearly dependent.
13. Look over Homework 8......
14. Let $v_{1}=(1,1,2,0,2), v_{2}=(1,-1,1,1,-1), v_{3}=(1,2,-1,1,3)$, and $v_{4}=(2,-1,-1,3,-1)$ be vectors in \mathbb{R}^{5}.
(a) How can you tell, without lifting a pencil or using a computer, that there is a non-zero vector that is perpendicular to each of v_{1}, v_{2}, v_{3}, and v_{4} ?
(b) Find a non-zero vector w in \mathbb{R}^{5} that is perpendicular to each of v_{1}, v_{2}, v_{3}, and v_{4}.

