Homework 11

- 1. The vectors $v_1 = (1, 1, -1)$; $v_2 = (2, 1, 2)$; and $v_3 = (2, -1, -1)$ are a basis for \mathbb{R}^3 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^3 .
- 2. The vectors $v_1 = (1, 1, -1, 1)$; $v_2 = (1, 0, 1, 2)$; $v_3 = (1, -2, -1, 0)$; and $v_4 = (0, 2, 1, -1)$ are a basis for \mathbb{R}^4 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^4 .
- 3. The vectors $v_1 = (1, 0, -1)$ and $v_2 = (2, 1, -1)$ span the subspace \mathcal{U} in \mathbb{R}^3 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{U} .
- 4. The vectors $v_1 = (1, 0, -1, 1)$; $v_2 = (2, 1, 1, -1)$; and $v_3 = (1, -1, -1, 0)$ span the subspace \mathcal{W} in \mathbb{R}^4 . Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{W} .
- 5. Let W be the hyperplane (i.e. 3 dimensional subspace) in \mathbb{R}^4 with equation 2a + b c + 2d = 0. Find an orthonormal basis for W.
- 6. Let M be the subspace of \mathbb{R}^4 spanned by $v_1 = (1,1,0,0)$; $v_2 = (0,1,1,0)$; $v_3 = (0,0,1,1)$; and $v_4 = (1,0,0,1)$.
 - (a) Use the Gram-Schmidt orthogonalization process to find an orthonormal basis for M.
 - (b) Extend the basis you found in part (a) to an orthonormal basis for all of \mathbb{R}^4 .
 - (c) Is w = (1, -1, 0, 1) in M? (Justify your answer.)
- 7. Let $C = \begin{pmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 1 & 2 \\ 2 & -1 & 5 & -4 \end{pmatrix}$ (Compare with problem 2. of Homework 8).
 - (a) Find an orthonormal basis for the nullspace of C.
 - (b) Find an orthonormal basis for the range of C'.
 - (c) Find the angles between the vectors you found in parts (a) and (b).
 - (d) Find an orthonormal basis for the nullspace of C'.
 - (e) Find an orthonormal basis for the range of C.
 - (f) What do you notice about your answers to parts (d) and (e).
- 8. Let M be the subspace of \mathbb{R}^4 spanned by (2, 1, 0, -1), (1, 1, 1, 0), and (-1, 0, 1, 1). Find w in M and u in M^{\perp} so that w + u = (3, 1, 0, 0).
- 9. Let \mathcal{W} be the subspace of \mathbb{R}^5 spanned by (1, 1, 0, -1, 1), (0, 2, -1, 1, 1), and (-1, 1, 1, -2, 1). Find w in \mathcal{W} and u in \mathcal{W}^{\perp} so that w + u = (1, 1, -1, 1, 1).
- 10. The matrix B is an 8×11 matrix and the dimension of $\mathcal{N}(B)$, the nullspace of B, is 5.
 - (a) What is the dimension of $\mathcal{R}(B)$, the range of B?
 - (b) What is the dimension of $\mathcal{R}(B')$, the range of B'?
 - (c) What is the dimension of $\mathcal{N}(B')$, the nullspace of B'?
 - (d) What is the dimension of $\mathcal{R}(B')^{\perp}$, the orthogonal complement of $\mathcal{R}(B')$?
- 11. An $n \times n$ matrix U is called unitary if $U' = U^{-1}$.
 - (a) Show U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^n .
 - (b) Show that if U is unitary, then U^{-1} is also unitary.
 - (c) Show that if U is a real unitary matrix, the map $x \mapsto Ux$ is a rigid motion of \mathbb{R}^n by showing that if U is unitary and v and w are vectors in \mathbb{R}^n , then
 - (i) $\langle Uv, Uw \rangle = \langle v, w \rangle$,
 - (ii) ||Uv|| = ||v||,
 - (iii) the angle between Uv and Uw is the same as the angle between v and w.