Homework 11

1. The vectors $v_{1}=(1,1,-1) ; v_{2}=(2,1,2)$; and $v_{3}=(2,-1,-1)$ are a basis for \mathbb{R}^{3}. Use the GramSchmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^{3}.
2. The vectors $v_{1}=(1,1,-1,1) ; v_{2}=(1,0,1,2) ; v_{3}=(1,-2,-1,0)$; and $v_{4}=(0,2,1,-1)$ are a basis for \mathbb{R}^{4}. Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathbb{R}^{4}.
3. The vectors $v_{1}=(1,0,-1)$ and $v_{2}=(2,1,-1)$ span the subspace \mathcal{U} in \mathbb{R}^{3}. Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{U}.
4. The vectors $v_{1}=(1,0,-1,1) ; v_{2}=(2,1,1,-1)$; and $v_{3}=(1,-1,-1,0)$ span the subspace \mathcal{W} in \mathbb{R}^{4}. Use the Gram-Schmidt orthogonalization process to create an orthonormal basis for \mathcal{W}.
5. Let \mathcal{W} be the hyperplane (i.e. 3 dimensional subspace) in \mathbb{R}^{4} with equation $2 a+b-c+2 d=0$. Find an orthonormal basis for \mathcal{W}.
6. Let M be the subspace of \mathbb{R}^{4} spanned by $v_{1}=(1,1,0,0) ; v_{2}=(0,1,1,0) ; v_{3}=(0,0,1,1)$; and $v_{4}=(1,0,0,1)$.
(a) Use the Gram-Schmidt orthogonalization process to find an orthonormal basis for M.
(b) Extend the basis you found in part (a) to an orthonormal basis for all of \mathbb{R}^{4}.
(c) Is $w=(1,-1,0,1)$ in M ? (Justify your answer.)
7. Let $C=\left(\begin{array}{rrrr}1 & 0 & 3 & -1 \\ 0 & 1 & 1 & 2 \\ 2 & -1 & 5 & -4\end{array}\right) \quad$ (Compare with problem 2. of Homework 8).
(a) Find an orthonormal basis for the nullspace of C.
(b) Find an orthonormal basis for the range of C^{\prime}.
(c) Find the angles between the vectors you found in parts (a) and (b).
(d) Find an orthonormal basis for the nullspace of C^{\prime}.
(e) Find an orthonormal basis for the range of C.
(f) What do you notice about your answers to parts (d) and (e).
8. Let M be the subspace of \mathbb{R}^{4} spanned by $(2,1,0,-1),(1,1,1,0)$, and $(-1,0,1,1)$. Find w in M and u in M^{\perp} so that $w+u=(3,1,0,0)$.
9. Let \mathcal{W} be the subspace of \mathbb{R}^{5} spanned by $(1,1,0,-1,1),(0,2,-1,1,1)$, and ($-1,1,1,-2,1$). Find w in \mathcal{W} and u in \mathcal{W}^{\perp} so that $w+u=(1,1,-1,1,1)$.
10. The matrix B is an 8×11 matrix and the dimension of $\mathcal{N}(B)$, the nullspace of B, is 5 .
(a) What is the dimension of $\mathcal{R}(B)$, the range of B ?
(b) What is the dimension of $\mathcal{R}\left(B^{\prime}\right)$, the range of B^{\prime} ?
(c) What is the dimension of $\mathcal{N}\left(B^{\prime}\right)$, the nullspace of B^{\prime} ?
(d) What is the dimension of $\mathcal{R}\left(B^{\prime}\right)^{\perp}$, the orthogonal complement of $\mathcal{R}\left(B^{\prime}\right)$?
11. An $n \times n$ matrix U is called unitary if $U^{\prime}=U^{-1}$.
(a) Show U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^{n}.
(b) Show that if U is unitary, then U^{-1} is also unitary.
(c) Show that if U is a real unitary matrix, the map $x \mapsto U x$ is a rigid motion of \mathbb{R}^{n} by showing that if U is unitary and v and w are vectors in \mathbb{R}^{n}, then
(i) $\langle U v, U w\rangle=\langle v, w\rangle$,
(ii) $\|U v\|=\|v\|$,
(iii) the angle between $U v$ and $U w$ is the same as the angle between v and w.
