Homework 10

- 1. In \mathbb{R}^3 with the usual inner product; v = (2, 1, -1) and w = (1, -1, 1).
- 2. In \mathbf{R}^4 with the usual inner product; v = (1, 1, 2, -2) and w = (2, 0, 1, 1).
- 3. In \mathbb{R}^4 with the usual inner product; v = (3, 0, 1, -1) and w = (1, -2, 1, -1).

In each of the following, find the angle between v and w. (Use the usual inner product.)

- 4. v = (3, 2, -1) and w = (1, 0, -2).
- 5. v = (2, -1, 2) and w = (4, 4, -2).
- 6. v = (1, -1, 2, 0) and w = (3, -1, -1, 5).
- 7. Let u = (1, -2, 1, 3) and v = (2, 1, -2, 1). Find ||u||, ||v||, and ||u + v|| and observe that $||u + v|| \le ||u|| + ||v||$.
- 8. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides. If u and v are vectors that form the sides of a parallelogram, then the diagonals are u + v and u v. Prove the vector form of the Parallelogram Law

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

- 9. (a) Use the Theorem on orthogonal sets to show that the vectors $w_1 = (1, 1, 0)$, $w_2 = (1, -1, 1)$, and $w_3 = (-1, 1, 2)$ are a basis for \mathbb{R}^3 .
 - (b) Use the corresponding expansion theorem to write v = (2, -1, 3) as a linear combination of w_1 , w_2 , and w_3 .
- 10. The vectors u₁, u₂, u₃, u₄ are orthogonal vectors that span the subspace U of ℝ¹¹. Moreover, ||u₁|| = 1, ||u₂|| = 2, ||u₃|| = 3, and ||u₄|| = 1.
 (a) What is the dimension of the subspace U?
 - (b) Find ||v|| for $v = 3u_1 2u_2 + 4u_3 u_4$?
- 11. The vectors u, v, and w are in \mathbb{R}^n and we are given that ||u|| = 1, ||v|| = 2, ||w|| = 3, that $\langle u, v \rangle = -1$, $\langle u, w \rangle = 2$, and that w is perpendicular to v.
 - (a) Find ||u 3v + 2w||.
 - (b) Show that u, v, and w are linearly independent.
- 12. (a) Show that $v_1 = (1, 1, 1, 1)$; $v_2 = (1, 1, -1, -1)$; $v_3 = (1, -1, 1, -1)$; and $v_4 = (1, -1, -1, 1)$ form an orthogonal basis for \mathbb{R}^4 .
 - (b) Write w = (2, 1, -1, 2) as a linear combination of v_1, v_2, v_3 , and v_4 .
- 13. (a) Show that $v_1 = (1, -1, 1)$ and $v_2 = (3, 2, -1)$ are orthogonal vectors in \mathbb{R}^3 .
 - (b) Is w = (2, 1, -1) in the subspace spanned by v_1 and v_2 ?
 - (c) Find a non-zero vector in \mathbb{R}^3 that is perpendicular to each of v_1 and v_2 .
- 14. (a) Show that $v_1 = (1, 0, 1, 1)$; $v_2 = (1, 1, -1, 0)$; and $v_3 = (1, -1, 0, -1)$ are orthogonal vectors in \mathbb{R}^4 .
 - (b) Is w = (6, -1, 2, 1) in the subspace spanned by v_1, v_2 , and v_3 ?
 - (c) Find a non-zero vector in \mathbb{R}^4 that is perpendicular to each of v_1 , v_2 , and v_3 .