1. In \mathbf{R}^{3} with the usual inner product; $v=(2,1,-1)$ and $w=(1,-1,1)$.
2. In \mathbf{R}^{4} with the usual inner product; $v=(1,1,2,-2)$ and $w=(2,0,1,1)$.
3. In \mathbf{R}^{4} with the usual inner product; $v=(3,0,1,-1)$ and $w=(1,-2,1,-1)$.

In each of the following, find the angle between v and w. (Use the usual inner product.)
4. $v=(3,2,-1)$ and $w=(1,0,-2)$.
5. $v=(2,-1,2)$ and $w=(4,4,-2)$.
6. $v=(1,-1,2,0)$ and $w=(3,-1,-1,5)$.
7. Let $u=(1,-2,1,3)$ and $v=(2,1,-2,1)$. Find $\|u\|,\|v\|$, and $\|u+v\|$ and observe that $\|u+v\| \leq$ $\|u\|+\|v\|$.
8. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides. If u and v are vectors that form the sides of a parallelogram, then the diagonals are $u+v$ and $u-v$. Prove the vector form of the Parallelogram Law

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

9. (a) Use the Theorem on orthogonal sets to show that the vectors $w_{1}=(1,1,0), w_{2}=(1,-1,1)$, and $w_{3}=(-1,1,2)$ are a basis for \mathbb{R}^{3}.
(b) Use the corresponding expansion theorem to write $v=(2,-1,3)$ as a linear combination of w_{1}, w_{2}, and w_{3}.
10. The vectors $u_{1}, u_{2}, u_{3}, u_{4}$ are orthogonal vectors that span the subspace \mathcal{U} of \mathbb{R}^{11}.

Moreover, $\left\|u_{1}\right\|=1, \quad\left\|u_{2}\right\|=2, \quad\left\|u_{3}\right\|=3$, and $\left\|u_{4}\right\|=1$.
(a) What is the dimension of the subspace \mathcal{U} ?
(b) Find $\|v\|$ for $v=3 u_{1}-2 u_{2}+4 u_{3}-u_{4}$?
11. The vectors u, v, and w are in \mathbb{R}^{n} and we are given that $\|u\|=1,\|v\|=2,\|w\|=3$, that $\langle u, v\rangle=-1$, $\langle u, w\rangle=2$, and that w is perpendicular to v.
(a) Find $\|u-3 v+2 w\|$.
(b) Show that u, v, and w are linearly independent.
12. (a) Show that $v_{1}=(1,1,1,1) ; v_{2}=(1,1,-1,-1) ; v_{3}=(1,-1,1,-1)$; and $v_{4}=(1,-1,-1,1)$ form an orthogonal basis for \mathbb{R}^{4}.
(b) Write $w=(2,1,-1,2)$ as a linear combination of v_{1}, v_{2}, v_{3}, and v_{4}.
13. (a) Show that $v_{1}=(1,-1,1)$ and $v_{2}=(3,2,-1)$ are orthogonal vectors in \mathbb{R}^{3}.
(b) Is $w=(2,1,-1)$ in the subspace spanned by v_{1} and v_{2} ?
(c) Find a non-zero vector in \mathbb{R}^{3} that is perpendicular to each of v_{1} and v_{2}.
14. (a) Show that $v_{1}=(1,0,1,1) ; v_{2}=(1,1,-1,0)$; and $v_{3}=(1,-1,0,-1)$ are orthogonal vectors in \mathbb{R}^{4}.
(b) Is $w=(6,-1,2,1)$ in the subspace spanned by v_{1}, v_{2}, and v_{3} ?
(c) Find a non-zero vector in \mathbb{R}^{4} that is perpendicular to each of v_{1}, v_{2}, and v_{3}.

