Clicker Slides Math 35100

November 2, 2011

Carl C. Cowen

IUPUI

Clicker: Channel 51

ResponseWare Session ID: MA35100

ResponseWare: ccowen@math.iupui.edu usual

Question 1: If $v=\left(\begin{array}{r}1 \\ -2 \\ 1 \\ 3\end{array}\right)$ and $w=\left(\begin{array}{r}0 \\ 1 \\ 2 \\ -1\end{array}\right)$, then $\langle v, w\rangle=\square$
A. 1 B. 2
C. 3
D. 4
E. 5
$\begin{array}{lllll}\text { F. }-1 & \text { G. }-2 & \text { H. }-3 & \text { I. }-4 & \text { J. } 0\end{array}$

Question 2: Suppose u, v, and w are an orthogonal set of vectors in \mathbb{R}^{5} so that $\|u\|=1,\|v\|=2$, and $\|w\|=\sqrt{3}$.

Then $\langle 2 u-v, 3 u+2 v+w\rangle=$
A. 1 B. 2
C. 3
D. 4
E. 5
$\begin{array}{lllll}\text { F. }-1 & \text { G. }-2 & \text { H. }-3 & \text { I. }-4 & \text { J. } 0\end{array}$

Question 2: Suppose u and v are vectors in \mathbb{R}^{4} so that $\|u\|=1,\|v\|=\sqrt{5}$, and $\langle u, v\rangle=-1$.

Then $\langle 2 u-v, 3 u-2 v\rangle=$ \qquad
A. 1
B. 2
C. 3
D. 4
E. 5
$\begin{array}{lllll}\text { F. }-1 & \text { G. }-2 & \text { H. }-3 & \text { I. }-4 & \text { J. } 0\end{array}$

