Clicker Slides Math 35100

September 28, 2011

Carl C. Cowen

IUPUI

Clicker: Channel 51

ResponseWare Session ID: MA35100

ResponseWare: ccowen@math.iupui.edu usual

Question 1:

$$
\text { Let } u=\left(\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right), v=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right), \text { and } w=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Are the vectors u, v, and w linearly independent?

1. Yes 2. No

Question 2:

$$
\text { Let } u=\left(\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right), v=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right), \text { and } w=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)
$$

Write w as a linear combination of u and v.

In this linear combination, what is the coefficient of u ?
A. 1 B. 2
C. 3
D. 4
E. w is NOT a lin. comb. of u and v
F. -1
G. -2
H. -3
I. -4 J. 0

Question 3:

$$
\text { Let } p=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right), q=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \text {, and } r=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Are the vectors p, q, and r linearly independent?

1. Yes 2. No

Question 4:

$$
\text { Let } p=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right), q=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \text {, and } r=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Write r as a linear combination of p and q.

In this linear combination, what is the coefficient of p ?
A. 1 B. 2
C. 3
D. 4
E. r is NOT a lin. comb. of p and q
F. -1
G. -2
H. -3
I. -4 J. 0

