Math 276: Solution to Problem 34b, page 160

Problem: Find a one-to-one correspondence between the natural numbers and the set of (positive) integers that are divisible by 5 but not divisible by 7 .

Construction:

The first observation is that an integer m is a multiple of 5 if $m=5 n$ for some integer n, and it is also a multiple of 7 if and only if n is a multiple of 7 . More specifically, n is a multiple of 7 , say $n=7 k$, then $m=5 n=5(7 k)=7(5 k)$ so that $m=5 n$ is also a multiple of 7 . On the other hand, if n is not a multiple of 7 , then $m=5 n$ is not a multiple of 7 :

$$
\begin{aligned}
& m=5 n=5(7 k+1)=5(7 k)+5=7(5 k)+5 \\
& m=5 n=5(7 k+2)=5(7 k)+10=7(5 k+1)+3 \\
& m=5 n=5(7 k+3)=5(7 k)+15=7(5 k+2)+1 \\
& m=5 n=5(7 k+4)=5(7 k)+20=7(5 k+2)+6 \\
& m=5 n=5(7 k+5)=5(7 k)+25=7(5 k+3)+4 \\
& m=5 n=5(7 k+6)=5(7 k)+30=7(5 k+4)+2
\end{aligned}
$$

For each of the cases in which n is not divisible by 7 , we see that $m=5 n$ is also not divisible by 7 because the above shows that m is 7 times an integer plus one of the remainders 1,2 , $3,4,5$, or 6 .

Thus, the integers we want to identify come from the 6 different remainders that give n not divisible by 7 . We can pair these integers with the set of natural numbers by thinking about whether they are, or are not divisible by 6 :

For p a positive integer,

$$
f(p)= \begin{cases}5(7 k+1) & \text { if } p=6 k+1 \\ 5(7 k+2) & \text { if } p=6 k+2 \\ 5(7 k+3) & \text { if } p=6 k+3 \\ 5(7 k+4) & \text { if } p=6 k+4 \\ 5(7 k+5) & \text { if } p=6 k+5 \\ 5(7 k-1) & \text { if } p=6 k\end{cases}
$$

To check this, we can see $f(1)=5$ (because $p=1=6 \cdot 0+1$), $f(2)=10$ (because $p=2=6 \cdot 0+2$), $f(3)=15$ (because $p=3=6 \cdot 0+3$), $f(4)=20$ (because $p=4=6 \cdot 0+4$), $f(5)=25$ (because $p=5=6 \cdot 0+5$), $f(6)=30$ (because $p=6=6 \cdot 1+0$), $f(7)=40$ (because $p=7=6 \cdot 1+1), f(8)=45$ (because $p=8=6 \cdot 1+2$), $f(9)=50$ (because $p=9=6 \cdot 1+3$), $f(10)=55$ (because $p=10=6 \cdot 1+4$), $f(11)=60$ (because $p=11=6 \cdot 1+5$), $f(12)=65$ (because $p=12=6 \cdot 2+0$), $f(13)=75$ (because $p=13=6 \cdot 2+1$), etc.

