NAME: \qquad
Math 276 (Cowen)
Homework 3
Due 27 February
Follow the instructions for each question and show enough of your work that I can understand what you are doing.
(10 points) 1. Show by using truth tables that the statements $p \rightarrow(q \vee \neg r)$ and $\neg p \vee(q \vee \neg r)$ are equivalent.
(10 points) 2. Write the negation of the statement

$$
(\exists x)(p(x) \wedge q(x)) \rightarrow r(x)
$$

in a way in which ' \neg ' is not a main connective
(that is, ' \neg ' does not apply to a compound statement).
3. For this problem, the universal set is the set of positive integers, \mathbf{N}.

Let $B=\{n: 1 \leq n \leq 60\}$.
Let $A_{2}=\{2 k: k \in \mathbf{N}\}$, let $A_{3}=\{3 k: k \in \mathbf{N}\}$, and let $A_{5}=\{5 k: k \in \mathbf{N}\}$. Recalling that \bar{C} is the complement of the set C, find the set

$$
B \cap \overline{A_{2}} \cap \overline{A_{3}} \cap \overline{A_{5}}
$$

4. Prove, using induction, that for all positive integers n, that

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

5. Define a sequence $\left\{a_{n}\right\}$ by $a_{1}=3$ and for each positive integer $n, a_{n+1}=2 a_{n}+1$.
(a) Find the first five terms in the sequence: $a_{1}, a_{2}, a_{3}, a_{4}$, and a_{5}.
(b) Prove by induction that $a_{n}>2^{n}$ for every positive integer n.
6.

(a) For which integers, n, is the integer $n^{2}+4 n+3$ divisible by 2 .
(b) For which integers, n, is the integer $n^{2}+4 n+3$ divisible by 3 .
7. Let \mathbf{N} be the set of positive integers and let $T=\{m \in \mathbf{N}: m$ is not divisible by 3$\}$. We know the set T is countable because it is a subset of the integers.
(a) Find a one-to-one correspondence between \mathbf{N} and T by explicitly describing a function $f: \mathbf{N} \mapsto T$. (Hint: One way to do this is by mapping the odd integers to the numbers that have remainder 1 when divided by 3 and mapping the even integers to numbers that have remainder 2 when divided by 3 .)
(b) For the function f you defined in (a) above, what are $f(47)$ and $f(34)$?
(c) For the function f you defined in (a) above, for which n is $f(n)=121$? for which n is $f(n)=98$?

