Homework Supplement 1

Definition If a and b are integers, $a \neq 0$, we say b is divisible $b y a$ or a divides b if there is an integer x so that $b=a x$.

1. In the following statements, suppose a, b, c, x, and y are integers.
(a) Show that if a divides b, then a divides $b c$.
(b) Prove that if a divides b and b divides c, then a divides c.
(c) Show: If a divides b and a divides c, then a divides $b x+c y$ for any integers x and y.
2. Use the fact that every integer is either even or it is odd to show that for all integers, n, the number $n^{2}-n$ is divisible by 2 .
3. Show that for each integer n, the number $n^{3}-n$ is divisible by 3 .
4. Give a direct proof of the assertion on the "Number Assumption" handout that if a and b are rational numbers, there is a rational number c so that $a<c<b$.

Note: The words "prove", "show", "demonstrate", etc. all mean the same thing in a math class.

