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LINEAR FRACTIONAL
COMPOSITION OPERATORS ON H2

CARL C. COWEN

Abstract. If ϕ is an analytic function mapping the unit disk D into itself, the composition
operator Cϕ is the operator on H2 given by Cϕf = f ◦ϕ. The structure of the composition
operator Cϕ is usually complex, even if the function ϕ is fairly simple. In this paper,
we consider composition operators whose symbol ϕ is a linear fractional transformation
mapping the disk into itself. That is, we will assume throughout that

ϕ(z) =
az + b

cz + d

for some complex numbers a, b, c, d such that ϕ maps the unit disk D into itself. For this
restricted class of examples, we address some of the basic questions of interest to operator
theorists, including the computation of the adjoint.

For any ϕ that maps the disk into itself, it is known that Cϕ is a bounded operator, and
some general properties of Cϕ have been established (see for example, [15], [12], [17], [13],
[10], [3], [11], [14], and [16]). However, not all questions that would be considered basic by
operator theorists are understood. For example, for general ϕ, no convenient description
of C∗ϕ is known and it is not known how to compute ‖Cϕ‖ (although order of magnitude
estimates are available [3]).

J. S. Shapiro (see [16]) has completely answered the question “When is Cϕ compact?”
Although the general answer is complicated, if ϕ is a linear fractional transformation Cϕ is
compact if and only if ϕ maps the closed unit disk into the open disk. It follows from this
that for a linear fractional ϕ, all powers of Cϕ are non-compact if and only if ϕ has a fixed
point on the unit circle.

The first section illustrates the diversity of this class of examples by showing there are eight
distinct classes on the basis of spectral information alone. Much of the spectral information
depends on the behavior of ϕ near the Denjoy-Wolff point, the unique fixed point α̂ of ϕ in
the closed disk such that |ϕ′(α̂)| ≤ 1.

In the second section of the paper, we find that in the linear fractional case C∗ϕ is the
product of Toeplitz operators and another composition operator. From this computation,
we derive ‖Cϕ‖ in certain cases and give a short proof of the subnormality of C∗ϕ when ϕ
is a hyperbolic inner linear fractional transformation (see also [14, 5]). Finally, the class of
linear fractional transformations for which Cϕ is hyponormal or subnormal is identified.

The class of composition operators is related to other areas of operator theory in somewhat
surprising ways. For example, Deddens [6] established a connection between the discrete
Cesaro operator and Cϕ where ϕ(z) = sz + 1 − s for 0 < s < 1 and showed that therefore
C∗ϕ is subnormal for these ϕ. In addition, commutants of many analytic Toeplitz operators
are generated by composition and multiplication operators.

Although this paper makes progress in answering some basic questions about linear frac-
tional composition operators, there are still problems to be considered. For example, com-
puting the norm is still unsolved except in special cases and exact conditions for unitary
equivalence and similarity are not known. It is hoped that the results here will point the
way toward results about more general composition operators, both on H2 and on related
Hilbert spaces of analytic functions.
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Eight Examples

In spite of their apparent simplicity, composition operators on H2 with linear fractional
symbol exhibit great diversity. In the following table, we collect some examples that show
that linear fractional transformations give rise to most of the major spectral types. The
Denjoy-Wolff point will be denoted α̂.

Example Properties Spectrum Cϕ Reference

ϕ(z) = ζz α̂ = 0 closure{ζk : k = 0, 1, . . . } [12]
where |ζ| = 1 elliptic, inner
ϕ(z) = 3z+1

z+3 α̂ = 1, ϕ′(1) = 1
2 {λ : 1√

2
≤ |λ| ≤

√
2} [12]

hyperbolic, inner
ϕ(z) = (1+2i)z−1

z−1+2i α̂ = 1, ϕ′(1) = 1 {λ : |λ| = 1} [12]
parabolic, inner

ϕ(z) = sz + 1− s α̂ = 1, ϕ′(1) = s {λ : |λ| ≤ 1√
s
} [6]

where 0 < s < 1 [3, Cor. 4.8]
ϕ(z) = (2−t)z+t

−tz+2+t α̂ = 1, ϕ′(1) = 1 {eβt : β ≤ 0} ∪ {0} [3, Cor. 6.2]
where Re(t) > 0 ϕ′′(1) = t (a spiral)
ϕ(z) = rz

1−(1−r)z α̂ = 0, ϕ′(0) = r {λ : |λ| ≤
√
r} ∪ {1} [10, Th. 3.8]

where 0 < r < 1 ϕ(1) = 1
ϕ(z) = −1

2z + 1
2 α̂ = 1

3 , ϕ
′(1

3) = −1
2 {(−1

2)k : k = 0, 1, . . . } ∪ {0} [1]
C2
ϕ compact, Cϕ not

ϕ(z) = −1
2z α̂ = 0, ϕ′(0) = −1

2 {(−1
2)k : k = 0, 1, . . . } ∪ {0} [1]

Cϕ compact

Adjoints

If ϕ is an inner function in H∞ so that it may be considered to be a mapping of the
unit circle into itself, then a satisfactory formula can easily be obtained for C∗ϕ by chang-
ing variables in the integral giving the inner product. The formula is more or less simple
depending on the multiplicity of ϕ, but in any case, the operator can be described as a
weighted expectation operator. If ϕ is a general analytic function mapping D into itself, no
satisfactory formula for C∗ϕ is known. In this section, we obtain a simple formula for C∗ϕ
when ϕ is a linear fractional transformation. The adjoint is a product of Toeplitz operators
and a composition operator.

LEMMA 1. If ϕ(z) = (az + b)(cz + d)−1 is a linear fractional transformation mapping D
into itself, where ad− bc = 1, then σ(z) = (az − c)(−bz + d)−1 maps D into itself.

PROOF. Linear fractional transformations may be regarded as one-to-one mappings of
the Riemann sphere onto itself. Let Ď denote the open set

Ď = {z : |z| > 1} ∪ {∞}.



Now, ϕ maps D into itself, so γ(z) = ϕ(z) also maps D into itself. It follows that γ−1(z)
maps Ď into itself. An easy calculation shows that

σ(z) =
1

γ−1(1
z )

which implies σ(z) maps D into D.

Recall that for g in L∞(∂D), the Toeplitz operator Tg is the operator on H2 given by
Tg(f) = Pfg for f in H2 and P the orthogonal projection of L2 onto H2. (For general
properties of Toeplitz operators, see [7, Chapter 7].)

THEOREM 2. Let ϕ(z) = (az+b)(cz+d)−1 be a linear fractional transformation mapping
D into itself, where ad− bc = 1.
Then σ(z) = (az − c)(−bz + d)−1 maps D into itself, g(z) = (−bz + d)−1 and h(z) = cz + d
are in H∞, and

C∗ϕ = TgCσT
∗
h .

PROOF. The function h is clearly in H∞. By Lemma 1, σ maps D into itself and since
the denominators of σ and g are the same, g is in H∞. This means the formula makes sense.

Now, for α in D, let Kα(z) = (1−αz)−1. This function is the reproducing kernel at α, that
is, 〈f,Kα〉 = f(α) for f in H2. It is easily proved that T∗hKα = h(α)Kα and C∗ϕKα = Kϕ(α).
Calculation gives

TgCσT
∗
h (Kα)(z) = h(α)TgCσ(Kα)(z)

= (cα+ d)
(

1
−bz + d

)(
1

1− α az−c
−bz+d

)

=
cα+ d

−bz + d− αaz + αc

=
1

1− ϕ(α)z
= Kϕ(α)(z) = C∗ϕ(Kα)(z).

Since the Kα span a dense set of H2, the desired equality holds.

A Norm Calculation

The best general estimate of the norm of Cϕ is

1√
1− |ϕ(0)|2

≤ ‖Cϕ‖ ≤
1 + |ϕ(0)|√
1− |ϕ(0)|2

and both inequalities can be achieved by linear fractional transformations [3, page 81].
In this section, we use the adjoint calculation of the previous section to find the norm

of the composition operators with affine symbol. It will become clear that the norms of
composition operators depend in a rather complex way on the parameters of the symbol.

THEOREM 3. If ϕ(z) = sz + t for |s|+ |t| ≤ 1, then

‖Cϕ‖ =

√
2

1 + |s|2 − |t|2 +
√

(1− |s|2 + |t|2)2 − 4|t|2
.

PROOF. In the trivial cases s = 0 and t = 0, the formula gives the correct norm ‖Cϕ‖ =
(1− |t|2)−

1
2 , [3, page 81]. We therefore assume s and t are non-zero.



The function ϕ has not been presented in a way that we may directly apply the adjoint
calculation; choosing a2 = s and b = t/a, a normalized expression for ϕ is ϕ(z) = (az +
b)(0z + a−1)−1. In the notation of theorem 2, C∗ϕ = TgCσT

∗
h where

g(z) =
(
−bz + a−1

)−1
,

σ(z) =
az

−bz + a−1
,

and h(z) = a−1.

Thus,
C∗ϕCϕ = a−1TgCσCϕ = T(1−abz)−1CσCϕ = TfCψ

where f(z) = (1− tz)−1 and

ψ(z) = ϕ(σ(z)) =
(|s|2 − |t|2)z + t

−tz + 1
.

Now

‖Cϕ‖2 = ‖C∗ϕCϕ‖ = lim
n→∞

‖(C∗ϕCϕ)n‖
1
n

= lim
n→∞

‖TfTf◦ψ · · ·Tf◦ψn−1C
n
ψ ‖

1
n

≤ lim
n→∞

(‖f‖∞‖f ◦ ψ‖∞ · · · ‖f ◦ ψn−1‖∞)
1
n lim
n→∞

‖C n
ψ ‖

1
n .

(Here ψk denotes the kth iterate of ψ. ) The last quantity in this expression is just the spectral
radius of Cψ which was calculated in [3, Theorem 2.1]. If |s| + |t| = 1, then ψ(t/|t|) = t/|t|
and ψ′(t/|t|) = 1, so the spectral radius of Cψ is 1. If |s| + |t| < 1, then ψ maps the closed
disk into the open disk and Cψ is compact and has spectral radius 1. Thus, the last quantity
in this expression is always 1.

In the case |s|+ |t| = 1, since 0 < |t| < 1, we find

|ψ(−t/|t|)| =
∣∣∣∣3− 4

1 + |t|

∣∣∣∣ < 1.

This information, together with the fact from the above paragraph that the Denjoy-Wolff
point of ψ is t/|t|, implies that ψ maps the closed unit disk onto a proper subdisk internally
tangent to the unit circle at t/|t|. In particular, this means that limn→∞ ψn(z) = t/|t|,
uniformly, in the closed unit disk (see, for example, [2]). It follows that limn→∞ f ◦ ψn =
(1− |t|)−1 = |s|−1 so

lim
n→∞

(‖f‖∞‖f ◦ ψ‖∞ · · · ‖f ◦ ψn‖∞)
1
n = |s|−1.

The above inequality now implies that ‖Cϕ‖ ≤ |s|−
1
2 .

On the other hand, taking α = rt|s|/(s|t|), we find

‖Cϕ‖2 ≥ lim
r→1−

‖C∗ϕKα‖2

‖Kα‖2
= lim

r→1−

‖Kϕ(α)‖2

‖Kα‖2

= lim
r→1−

1− r2

1− (r|s|+ |t|)2
=

1
|s|
.

Thus, ‖Cϕ‖ = |s|−
1
2 when |s|+ |t| = 1, which agrees with the conclusion for this case.

In the case |s| + |t| < 1, then ψ(z) = (pz + t)(−tz + 1)−1, where p = |s|2 − |t|2, and the
fixed point of ψ in D is the smaller solution of

tz2 + (p− 1)z + t = 0



that is, the smaller of

z =
1− p±

√
(p− 1)2 − 4|t|2
2t

.

Noting that −1 < p < 1 and (p − 1)2 ≥
(
1− (1− |t|)2 + |t|2

)2 = 4|t|2, we see that the
numerator is a positive number in either case, so the Denjoy-Wolff point is

α̂ =
1− p−

√
(p− 1)2 − 4|t|2
2t

.

As before, limn→∞ f ◦ ψn = f(α̂), and ‖Cϕ‖2 ≤ |f(α̂)|. On the other hand, since

C∗ϕCϕ(Kα̂) = (C∗ϕCϕ)∗(Kα̂) = (TfCψ)∗(Kα̂)

= C∗ψT∗f (Kα̂) = f(α̂)Kψ(α̂) = f(α̂)Kα̂,

we see that ‖Cϕ‖2 = ‖C∗ϕCϕ‖ ≥ |f(α̂)|. Therefore, in this case, ‖Cϕ‖ =
√
|f(α̂)| which is

the conclusion of the theorem.

Except when s > 0 and |t| = 1 − s, the operator Cϕ2 is compact and the spectral radius
is 1. Except when t = 0, the norm of Cϕ is greater than 1, so in general, we see the spectral
radius is less than the norm.

Co-subnormality for the Inner Hyperbolic Transformations

Let ϕ be an inner linear fractional transformation with fixed points ±1. Nordgren, Rosen-
thal , and Wintrobe [14] and Cowen and Kriete [5] have given proofs that such C∗ϕ are
subnormal. Nordgren, Rosenthal, and Wintrobe, in addition, study other properties of these
operators, and Cowen and Kriete compute the associated measure and study co-subnormality
of other composition operators. In this section, we use the adjoint calculation to give a very
easy proof of the co-subnormality based on a condition of Embry [8]. This proof does not
construct the associated scalar measure, but constructs an associated operator measure.

THEOREM 4. For 0 < r, r 6= 1, if

ϕ(z) =
(r−1 + r)z + (r−1 − r)
(r−1 − r)z + (r−1 + r)

is the associated inner linear fractional transformation with fixed points ±1, then C∗ϕ is
subnormal.

PROOF. We will use Embry’s condition [8]:
S is subnormal if and only if there is a positive operator measure Q such that

(S∗)nSn =
∫
t2ndQ(t).

To apply Embry’s condition to C∗ϕ , we must calculate Cϕn(C∗ϕ)n = CϕnC
∗
ϕn

.
A straightforward calculation gives

ϕn(z) =
1
2(r−n + rn)z + 1

2(r−n − rn)
1
2(r−n − rn)z + 1

2(r−n + rn)
.

By theorem 2, C∗ϕ = TgCσT
∗
h where

g(z) = 2
(
−(r−1 − r)z + (r−1 + r)

)−1
,

σ(z) =
(r−1 + r)z − (r−1 − r)
−(r−1 − r)z + (r−1 + r)

,



and h(z) =
1
2
(
(r−1 − r)z + (r−1 + r)

)
.

Since σ(z) = ϕ−1 and g ◦ ϕ = h, we have

CϕC
∗
ϕ = CϕTgCσT

∗
h = Tg◦ϕCσ◦ϕT

∗
h = ThT

∗
h .

This means
CϕnC

∗
ϕn

= T( 1
2rn− rn

2
)z+ 1

2rn + rn

2
T( 1

2rn− rn

2
)z̄+ 1

2rn + rn

2

=
(

1
4r2n

− 1
2

+
r2n

4

)
TzTz +

(
1

4r2n
− r2n

4

)
(Tz + Tz) +

(
1

4r2n
+

1
2

+
r2n

4

)
I

=
1
r2n

(
1
4

(TzTz + Tz + Tz + I)
)

+
1
2

(I − TzTz) + r2n
(

1
4

(TzTz − Tz − Tz + I)
)

=
1
r2n

(
1
4

(Tz + I) (Tz + I)∗
)

+
1
2
(
I − TzT

∗
z

)
+ r2n

(
1
4

(Tz − I) (Tz − I)∗
)

=
∫ r

0
t2ndQ(t)

where

Q({r−1}) =
1
4

(Tz + I) (Tz + I)∗ ,

Q({1}) =
1
2
(
I − TzT

∗
z

)
,

and Q({r}) =
1
4

(Tz − I) (Tz − I)∗ .

Thus Q is a positive operator valued measure, and Embry’s theorem implies that C∗ϕ is
subnormal.

COROLLARY For 0 < r, r 6= 1, let

ϕt(z) =
(r−t + rt)z + (r−t − rt)
(r−t − rt)z + (r−t + rt)

be the associated representation of the group of inner linear fractional transformations with
fixed points ±1. Then the group of operators {C∗ϕt

: t ∈ R} is a subnormal group.

PROOF. By a theorem of Ito [9], it is sufficient to prove that each operator C∗ϕt
is sub-

normal which is a consequence of theorem 4.

Hyponormality and Subnormality of Cϕ

In [5, theorem 1.2], it is noted that if Cϕ is hyponormal, then ϕ(0) = 0. In this section,
using the adjoint formula of theorem 2, we find all hyponormal composition operators with
linear fractional symbol. As Nordgren observed in [12], if ϕ is any inner function with
ϕ(0) = 0, then Cϕ is an isometry and is subnormal, so we have not found a complete list of
all hyponormal composition operators on H2.

An easy calculation shows that if ϕ(z) = z(uz + v)−1 then ϕ maps D into itself if and
only if |v| ≥ 1 + |u|. H. J. Schwartz [15] proved that Cϕ is normal whenever u = 0, so the
following theorem covers the remaining cases.



THEOREM 5. For u 6= 0 and |v| ≥ 1 + |u|, if ϕ(z) = z(uz + v)−1, the following are
equivalent:

(i) Cϕ is subnormal.
(ii) Cϕ is hyponormal.
(iii) v > 1 and |u| = v − 1.

PROOF. Subnormality always implies hyponormality, so (i)⇒(ii) trivially.
We begin by noting that the vector K0 = 1 is an eigenvector for both Cϕ and C∗ϕ since

(Cϕ1)(z) = 1(ϕ(z)) = 1 and C∗ϕ(K0) = Kϕ(0) = K0. This means that zH2, which is the
orthogonal complement of the subspace of constants, is a reducing subspace for Cϕ. Therefore
Cϕ is hyponormal or subnormal if and only if Cϕ|zH2 is hyponormal or subnormal.

Choosing α−2 = v and β = αu, a normalized form for ϕ is

ϕ(z) = αz(βz + α−1)−1.

By theorem 2, this means C∗ϕ = TgCσT
∗
h where

g(z) = (α−1 − 0z)−1 = α,

σ(z) = (αz − β)(α−1 − 0z)−1 = v−1z − (u/v),
and h(z) = α−1 + βz.

Thus
C∗ϕ = αCσTα−1+βz = CσT1+(u/v)z

.

If zF is in zH2, then this formula shows that

C∗ϕ(zF ) = CσT1+(u/v)z
(zF )

= Cσ

(
zF + (u/v)F

)
=

(
v−1z − (u/v)

)
F ◦ σ + (u/v)F ◦ σ

= v−1zF ◦ σ = z(v−1F ◦ σ).

That is, if U is the unitary operator from H2 onto zH2 given by
UF = zF , then

U∗(C∗ϕ |zH2)U = v−1Cσ.

Taking adjoints in this equation, we see that Cϕ is subnormal or hyponormal if and only if
C∗σ is.

If (iii) is true, then 0 < v−1 < 1 and |u|/v = 1−v−1 so by [5, theorem 2.2] C∗σ is subnormal
and Cϕ is also.

On the other hand, if Cϕ is hyponormal, then C∗σ is hyponormal and its spectral radius
and norm are equal. By [3, theorem 2.1] the spectral radius of Cσ is 1 if σ has a fixed point
in D. Since σ(0) = −(u/v) 6= 0, the norm of Cσ is not 1 and σ does not have a fixed point
in D. It follows that σ has a fixed point c on the unit circle, and by [3, theorem 2.1], we see
that 0 < σ′(c) = v−1, and the spectral radius of Cσ is

√
v. Now since ‖Cσ‖ =

√
v, theorem 3

implies that |u|/v = 1− v−1 so that |u| = v − 1 and v > 1 as in (iii).
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