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Analytic solutions of Biittcher's functional equation
in the unit disk

Cenr C. CoweN

Suppose / is analytic on the unit disk D, maps D into itself, and has the Taylor
series f (z): a&r * ar+tz r+r +'" where arl0 and k > 2. This paper gives neces-
sary and sufficient conditions for the existence of single-valued analytic solutions
defined on all of, D to Bdttcher's functional equation a"f : qn.It is easily seen [5]
that the only non-zero solutions ocrur when k : m- There is always a solution of
the equation a of : o' that is holomorphic and univalent in a neighborlnod of
zero: see Valiron [9, pp.124-127J. When o is a solution of Bottcher's equation, so
is q" for n:2,3,..., so our problem is to determine when one of these has a
single-valued continuation to all of the disk. We shall see that the existence of such
solutions depends on a multiplicity condition on the zeroes of iterates of /, and we
deterrnine all solutions when the condition is met. The solutions are computable in
the sense that the Taylor coeftcients of o can be obtained recursively.

As usual, from the solutions of this fundamental equation one can obtain
information about solutions of the classical functional equations of Abel and
Schroeder and about fractional iterates of /. Since these necessitate consideration of
multiple-valued functions, we confine our attention on these questions to those /
that are real-valued and increasing on [0,1). We obtain entirely analogous results to
those of Szekeres [8], Kuczma [4J, and Ger and Smajdor [3]. The additional
information obtained here is that the natural fractional iteration semigroup

l,(x)= F(:, t)  is real analyt ic in t  as well  as r when f '$)>0 for 0< r < I  and that
if l im,-r-f(x):1, this semigroup is actually embedded in a continuous group.
References to the extensive literature on the subject of iteration may be found in

[6]. I would like to thank the referees for several helpful suggestions and for
pointing out some relevanl references.
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We begin by examining the appropriate notion of multiplicity. For zo in D, n a
positive integer, let m(zo, n) be the multiplicity of the zero of f, at zs, that is, if

f^(z): bo* b'(z - zo)+ br(z - zo)2 *. -  .  then rn(zo,n) = minf, b, l  01. (Here f,
denotes the nth i terate of  / ,  that  is ,  f r  = f  and f , . t : f  " f^  Ior  f , :1 ,2, . . . . )

Since tn(zo,n ) > 0 if and only if f.(zo): 0, we have rn(zo, n) = 0 for all n for all
but countably many zo in D. Since f (z)= atzr +. ",  w€ see t?r(O,n) :  k '  for
t = 1 , 2 , 3 , . . . . I f  1 @ o ) : 0  a n d  m ( z o , l ) = i  ( s o  t h a t  f ( z ) : b i Q - z o l  * . . . )  t h e n
nr(zo,n ):  jk '- t  (since f UQ)): a. (biQ - zol +. - -) '  + - .  . ,  etc.).

For f analytic in D, mapping D into itself with /(z )= arz' + . . - where arl0
and k 22,we define the multiplicity set of f to be the set Qr: lk-^m(z,n); z e D,
n ' = l r 2 r 3 r . . . l .

As a consequence of the above observations we have the following.

PROPOSITION. Forf as abooe,Qr ) {0,1}. Moreotser, if {z eD: f^(z)=0 for
some n ) is finite, then Q1 is finite.

We now compute the multiplicity sets for some particular functions.

EXAMPLE l. Ict f be the inner function f(z)= zL exp((z +lXr -1f'),

where t *2. Since hQ)=0 i f  and only rt  z :0, we have m(z,n):0 for zl0,so
Qr = {0' U-

EXAMPLE 2. L-et f(z):0.32'-0.62t, rhen Qr = {0,1,t,1}. To see this we
o b s e r v e  t h a t f ( z ) : 0 i f  a n d o n l y  r t  z : 0 o r  z : l ' , f r ( r ) : 0 i f  a n d o n l y i f  z : 0 , 2 : l
o r  z :z ' -  -0 .8 .  S ince  lh? ) l= (0 .9 ) '<0 .5  fo r  k=3  and  s ince  f r ( z ) f z ' fo r
f  r  l a  l ,  w e  s e e  t h a t  m ( z , n ) : 0 e x c e p t  z  = 0 ,  z : l a n d  z :  z ' . I t  i s e a s y t o s e e  t h a t
tt t(0, n):2'  for al l  n, fr( l ,n; :2^-t for al l  n, and fr(Z',n) = 2^-2 for n >2 with
Dt (z ' ,1 ) :  0 .

EXAMPLE 3. For f(z)=2-"2'(z -r) ' ,  since l f  (z) l<t for lr l<1, we see
Qr : {0, 1,3}.

EXAMPLE 4. Suppose B(z): arzt +'' . is a finite Blaschke product of order
M, at I  0 with k >z,and B (z)/ arzl.Since B has order M, B'(z):p for at most
M - 1 points in D. Choose u in D, af 0 such that B(ot):g and let r =
max{ l z l :  B ' ( z ) - -0 } .By  Schwarz ' l emma,  lne ) f  < l z l to rA<1 , l<  I  and  rhe  on ly
fixed point in D is 0, so we can find ar t in D, with f r' I > r, and B,-r(a ') : ,. Let
m :  m( r ' , l )>  l .  Now i f  B^ (z ) :  a r '  t hen  m(z ,n  *  l ) :7n  and  mk- " - t  €  Q" .
S ince  B"  mapsD on to  D  f ,o r  everyn ,wesee  tha t  mk- " - t  €Q"  fo rn  =1 ,2 ,3 , . . . .
Carrying the ideas slightly further we see that.Qs is a bounded infinite set.
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EXAMPLE 5 .  Le t  t ;  -  1 -2 - i  to r  i=1 ,2 ,3 , . . . ,  l e t  k>2  be  g iven  and  le t

f(z)=it,fr(tr)'J'
(the Blaschke condition guarantees the convergence of the product.) Since

f (D)CrD and  ra (4 ,1 ) : k i ,  we  have  Qr : t0 ,1 ,2 ,3 , . . .1 .

We now state the main theorem.

THEOREM 1. I-et f (z)= arz' +'' ' , where k >2 atd at/0, be analytic in D
with f (D)C D, and let I*0 be gioen. There is o analytic in D, with o(D)C D, such
that o(f (z))= Io(z)^ if and only if m = k and there is an integer I such that IQl is a
subset of the integers. Moreooer, in this case, there is a unique solution o(z) =

9z' +. -. fo, each such I and solution g of the equation

gr- t  :  I - taL.

The first stefl in the proof is the construction of a solution near zero for A : I
where o(z)=Pz+..'. This step does not involve the multiplicity set. Tbe
solutions of the general equation are of the form (o,o)t where a is a complex
number and I a positive integer. These local solutions have single-valued extensions
to all of the disk exactly when lQt is a subset of the integers.

Proof. I .  Find e >0 such that l t l<, and f(z):0 imply z:0. Let H -

{ar: Re &, > 0}. Define F : H + H to be any branch of

F(r) : -logf (ee-' ) + log e.

All branches are single-valued since H is simply connected and F is arbitrarily
continuable in H. For fixed ar, since ee-o-2'a winds around zero once for 0 = , = 1,
the image f (ee-'-'n)winds around zero k times, so F(or +2d): F(r.r) +Zzrki.(lt
follows that there are k branches of logf (ee--) on ^FL)

Now 
,

lim Re 
F(r ) = lim 

- log l/(ee-')l + loe a
r - o  X  r € e  X

_  r : _  
- l o g f a r e * e - -  +  a . * r e e ' t e - ( - * t t s  + . . . I

-  r t l t t

= ;;  o -toelo,r '  + o, lr" ' r- '  + " ' t  -  o.
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Let t ing 4( l )=r"  * iy" ,  f rom 17,p.MAl  we have S@)=l im"-- [ (F"( r . r ) - iy"Yx"1
exists and g(F(r)) = p(g(r)) where E@)= ou" + ip,for some a ) 0 and p real.

Now

B(r.,+zni)=ligry

,r^F,(co\*Zrk^i 
- iy^: l im E, (r.r)- iy" +ZriE

;-:; f" nd fi X;

:  s(a)+Zilgg #

Thus 7 : lim"*(k'lx^'1: (Zz{.f'[8(al +2zri)- g(r)l exists.

Since g is univalent for ar in largarf < rl4,lorl> p for p sufficiently large [7,
Theorem 3, p. 4411, we find that ll0.

We also have

g(F(ar +27ri))= e(7ko +2zli))= o;g(a +2ri)+ ip = ag(a)+ a"vlni + ip

and on tlrt other hand

s(F(a, +zfl i )) :  g(F(co) +}f:ki)= g(F(or))+2rk7i:  ag(ct)+2rk"yi + ip-

Since 0< y 4o, this means a : k.
Now define A by A(t)= T-' [g(ar)+ p(k - lrr tJ. Thus A(t *?ni):

A ( t \+2d  and  A(F( r ) )=ke(o r ) .  De f in ing  d  by  6 (z )=exP? A( - logz ) )  fo r

0<lrl< t, we obtain from these relations

exP( -  A(-  log z  +Zl r : i ) )= exP ? A(-  log z) -Zt i ) :  exP ? A(-  log z) )

so that 6 is single-valued and

oUQ)) = exP ? A( - loe(/(z )))

= €xP e A(F( - log z))) : exP ? kA( - log z))

: [exP ? A( - log z ))J' = 6(z)r.

By Theorem 3 of  [7 ,  p .Ml l ,  we have la lar ; f ' *o  and arg@-'A( ' ) -0  as

or+@ wi th f lm , l=zr ,  which means ReA(r) -c  as &r-+co wi th f  Imr. ' l=  zr .  I t

fol lows (by choosing fIm(log z)l= z) that l im,<6(z)=0, so 6 has a removable

singularity at 0.
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Thus d is analyt ic for lr l<t and 6(z):0 i f  and only i f  Z =0, so 6(z)=
6,tt +. -. where i=1, 5i10. Under these circumstances, each branch of 6rl, is
single-valued and analytic inlzf <e and (6tti)'(0)10. Choose one branch and
denote i t  6o. We have lo"U|)) l '= 6(f(zy=lo(z)J'=l6o(z)tJ' ,  which means
6 o (f (z)\ : eio 6 s 1z)k for some r eal g . Defining o o Q) - eiq (k - I )-' 6o (z), we have rhat as is
analyt ic, single-valued for lzl<t,60(0)-0, o'o(0)10, and oo(fQ\):ooQ)k. That
is, oe is a local solution to our functional equation.

II. Suppose I is an integer such that lQ is a subset of the integers. For I z 11 e,
we define o(z): (ao(z))t ro that o(z): bef + ' . . and o(f (z))= o(z)'. We want to
show that o has a single-valued extension on all of D.

For each integer n, one of the branches of, lo(f,(r))J"t' Ior lz f ce is o(z).
Consider the analytic continuation of this branch to lz: lf"(z)l< r). The possible
branch points o(this function are the points zo such that f.(zo)=0. For 6 small
positive, y(t): Lo* 6e'-', 0 s I - 1, winds around Zo onc€ and f"(7(t)) winds
around zero m(zo,n) times, so c(f" (l(t))) winds around zero Im(znn) times. By
the choice of I, k" divides lm(zo,n) so continuinglofi,(z))|"" along 7 gives the
same function element lor t=0 as for t=l. In other words IrU,G\)J"" is
single-valued near each branch point, so it is a single-valued analytic continuation
of. o(z) to {z :lf"(z)l< r}. In particular, this means that, if rn < n and lf^(z)l< t
then IoU^G))l' '" :lo(f^(z))J"". Thus, defining <r on D by o(z):ls(f.(z))l"t',
where n is an integersuch that f/"(z)lce, makes o into a single-valued analytic
function on D with o(/(z)): o(z)'.

III. Now, if A t'O and rt Br-r: A-t, then h : Fo satisfies the equation h o/:
lh t. This means there are at least k - I distinct solutions of the equation
h" f  :A l r r  w i th  h (z )=cF '+ . . .where  c t f0 .  On  the  o ther  hand ,  i f  t r  i s  such  a
solution, equating the coefficients of, z't yields cfiL= Aciso that ci-'= A-tal and
we see that there are at most k - | possible leading coefficients, c1. Equating
coefficients of za*t lor i :1,2,.. . we obtain

g 1f, crr ct+t,. , . ,ct*i): Ict*Fl-t + R, (1, c,,. . . , cr*i-r)

where ; =ljlkJ and $ and R1 are functionsdepending on the variables indicated.
Since k>2, this means that cr*; is determined by the choice of cr. Since there are
k - | formal power series solutions, and we have k - 1 analytic solutions, we find
that each formal solution actually converges in D.

This completes the proof of existence and uniqueness if we are given an integer I
such that tQy is a subset of the integers. We now turn to the necessity of the
multiplicity condition.

IV. As we saw in III, existence of a solution of h " f =lhr is equivalent to the
existence of a solution of o of = ct. Suppose o is single-valued, non-constant, and
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analyt ic in D, and satisf ies o of = q'with c(z)=b,zt +.. '  where b,f A. We wil l
show lQ; is a subset of the integers.

We have o(0): o(/(0)):q(0)' and a(z)L' :q$.(z))-g.(0) for all z in D.
Since o is non-constant, this means that o(0)=0 and o(D)CD. Choose €')0 so
that I z l< e' and c(z): 0 implies z :0. Given zoin D such that f^(zo) = 0, choose
6>0 such that  0<l t -zo l<26 impl ies hQ) lO and,  i f  y( r )= zs*6e2i l ,
0st<1, then f/"(y(t)) l  Ie' .  Now as y winds around zoonce, c(fn(y(r))) winds
around zero lm(zs,n) times, and a(l(t)) winds around zero j times where
o(z): ci(z - zol +. - .  .  Since a(f.(z)):  o(z)t",  *e obtain lm(zs,n): jk" so
k- ' lm(zr ,n)=.  jan in teger .  S ince Qr: {0}Ulk- 'm(z,n) :  hQ):0,  t r  =1,2, . . . } ,
we see lO1 is a subset of the integers. tl

COROLLARY l. If Io is the hast integer such that loQt is a suDset of the
integers, then euery solution of h " I = lh' analytic in tlv unit disk is of the form ao^
where  o  " f  =  o '  and  o (z )=  buzba . .  . .

, t
COROLLARY 2. If lz: f.(z)=A forsome nl is afinitesetthenh"f : Ih'has

nn-constant solutions analytic in tlu unit disk for eoery A*0.

Proof. q is a finite set of rational numbers. Let I be the least common multiple
of the denominators. tr

COROLLARY 3. If ll/" ll- <l for some n, then h"f : Ih' has non-constant
solutions analytic in the unit disk for eaery Il0.

Proof. Let e >0 be small enough that f zl<c and f(z):0 imply z:0. The
hypothesis guarantees that, for mo large enough, ll/^ll< € so that, if rn > no and

f^(z):O, then f^(z):0. It follows that ktQr is a subset of the integers. fl

We now turn to the special case in which f is real-valued and increasing on [0,1).
(Ihis case has been studied more extensively in tbe literature, see for example,
Szekeres [8J.) We pay particular attention to the case in which lim,-r- f(r):\,
which includes probability generating functions. Tbeorems 2 and 3 are restatements
of results of Kuczma [4J and Ger and Smajdor [3J for the analytic case,

THEOREM 2. Suppose f is analytic in D, f(D)C D, f(z): arz' * - -., k 22,
with ar)A, and f ' (r)>O for 0<r(1. Then for cach c>0 there is a unique

furction o, complex analytic ncar 0, andreal arialytic on l0,l) with s'(0)>0, such
t l ra t  q( f ( : ) ) :ca(x) ' for  0s:<1.  Moreooer ,0<o(r )<1 ond o ' (x)>O for
0<r <l and, if f satisfies f'(x)>O for 0(.r(1, then s-r is real analytic (on
(0, a(l -))) os well.
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hoof. We consider the case c = I first. I*t oo be the function constructed in
step I of the proof of Theorem 1. If we choose appropriate branches of the
functions in the construction, oo is non-negative on the interval [0, r). Since

f '(x)>0 for 0=r ( 1, we see that hG)=0 i f  and only i f  r  :0, so we define . '  on

[0, 1) by cr(r) =Joo(f"(r))Jt"', where n is large enough, that /. (r) < e, and we take
the branch of, arlr' that is non-negative on [0,1). It is easily checked that o is
welldefined, o(f (x)) = cr(r)r, and cr has tbe analyticity properties asserted.

From the functional equation we see that

o' U.(: ))/l(r ) : k^ lolo (r)J'-'o'(r ),

so that

,-, t t \-  a'( f" (r)) f l ({)v r ' ,  -  
k" [4(r) l^-t

Thus, it f'(x)> 0 for 0 < r ( 1, then f'"(x)> 0 for all n and, since r'A^QD *0 for n

. large enough, we have o'(x)> 0 for all .r in (0, 1). This means a-r is welldefined
and real analytic on (0, s(l- ). An easy computation shows lr(.r) - c$-Lno'(x)
satisfies the equation ft "f = ch'.

As in Theorem 1, the uniqueness is a consequence of the uniqueness of a formal
power series solution with o'(0) > 0. tr

As would be expected, the solution of this functional equation leads to solutions
of the classical functional equations on ' (0,1). The function A(x):
(logk)-'logllogo(r)f is a real analytic solution of Abel's equation A "f : A +l
for 0( r (  l . I f  a ) 0, al I ,  S1r; = [ log o(x)l '  where p = ( logc)( log k)- ' is arcal
analytic solution of Schroeder's equation S"/: cS for 0<x < 1.

We now turn our attention to fractional iteration.

THEOREM 3. Suppose f is analyt ic in D, f(D)C D, f(z): atzr *-.- k>2
with ar>A and f'(x)>0 for 0< r <1. TIun there is a function F(x,t) defined for
0s.r <l and 0= t <rr, real analytic in each oariable such that F(x,l): f (x) and
F(F(r ,s) , t ) :F(r ,s  +t )  lor  0sx (  |  and 0=s,  r  (oc.  Moreouer ,  i /  l i rn , - r -  f (x) :
l, then F is defined (and has the same properties) for. -6< t1a.

Proof. FromTheorem 2wehavethat thesolut ion of oof = o'with o'(0)>0is
real analytic on (0,1) and has real analytic inverse on (0, o(1 - )). We define F by
F(x,t)= s-'(Ia(r)J''). This function is easily seen to have appropriate properties
f o r  t > 0 .
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Now, since o is increasing and c(r)<l for 0<r<1, l i rn,-r-a(x) exists. I f
l im , - r -  f ( x )=  l ,wesee f rom oUGD:  o (x ) *  tha to (1  - )=  s ( l - ) ' sogr (1  - )=  1 .
It follows that o-r([o(r)J*') is well defined for t(0 as wett. D

This theorem says that the discrete semigroup of iterates of / (on [0, U) can be
embedded in a continuous semigroup and, il lim,*r- f (x):1, it can be embedded in
a continuous group. In particular this is true if / is a probability generating function
(ai>0 and Zi-rai: l). It is not dfficult to see that this family of iteratesis regular
in the sense of Szekeres [8, p.216l.
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