Although in most of the course we will be dealing with real numbers, when we get to eigenvalues, we will be forced to consider complex numbers. When complex numbers arise, I will use them without apology. If you are unfamiliar with complex numbers, you may wish to learn a little about them. Any source is acceptable; some possiblities are high school algebra texts, "engineering math" texts, complex analysis texts (for example, Churchill's Complex Variables is on reserve in the Math library), there are even a few pages in Strang (pages 217-219). The ability to solve the following problems indicates adequate knowledge for this course. These problems are for practice only, they will not be handed in.

Practice Problems

1. Let $z=4-5 i$.

Find: (a) $\operatorname{Re}(z) \quad$ (b) $\operatorname{Im}(z) \quad$ (c) $|z| \quad$ (d) \bar{z}.
2. Compute:
(a) $(3+2 i)(2-i)+i(-2+i)$
(b) $(2-3 i)^{2}(4+2 i)$
(c) $(2-i)^{2}+(1+3 i)^{2}$
(d) $(\overline{(2-i)})^{2}+(\overline{(1+3 i)})^{2}$ see (c)
(e) $\frac{1}{3+4 i}$
(f) $\frac{4-2 i}{1+i}$
(g) $\frac{2+3 i}{(2-i)^{2}}+\frac{i}{1+i}$
(h) $\left|\frac{1+3 i}{(2-i)}\right|$.
3. Find all (3) roots of the equation

$$
z^{3}-3 z^{2}+7 z-5=0
$$

Answers:

1. (a) 4 (b) -5 (not $-5 i$!) (c) $\sqrt{41}$ (d) $4+5 i$.
2. (a) $7-i$ (b) $4-58 i$ (c) $-5+2 i$ (d) $-5-2 i$ [i.e. the conjugate of (c)]
(e) $\frac{3}{25}-\frac{4}{25} i$ (f) $1-3 i(\mathrm{~g}) .26+1.18 i$ (h) $\frac{|1+3 i|}{|2-i|}=\frac{\sqrt{10}}{\sqrt{5}}=\sqrt{2}$
3. The roots are $1,1+2 i$, and $1-2 i$.
