Exercises 1.2

1. Let u=(1,-1,3), v=(0,2,-1), and w=(3,1,1). Evaluate the following expressions:

- (a) 4u (b) -3v (c) u+w (d) 4u-3v (e) 2u-4v+3w

2. Let u = (2, 1, 0, -3), v = (1, 0, 3, -1), w = (2, 0, 6, -2), and x = (1, -2, 1). Evaluate the following expressions when possible; say *Undefined* when the arithmetic in the expression cannot be carried out.

- (a) 3u 2v (b) 2u + v 3w (c) 3x + w (d) $\alpha u + \beta v + \gamma w$

3. Let u, v, and w be vectors as in the previous problem.

- (a) Find α and β so that $\alpha u + \beta v = (1, 2, -9, -3)$.
- (b) Find γ and δ so that $\gamma u + \delta w = (3, -1, 2, 0)$.
- (c) Find ϵ and ζ so that $\epsilon v + \zeta w = (-1, 0, -3, 1)$.

4. Let $A = \begin{pmatrix} 5 & -4 & 1 \\ 12 & -11 & 6 \\ 10 & -10 & 8 \end{pmatrix}$ $v = (1, 1, 0), w = (1, 2, 1), e_1 = (1, 0, 0), \text{ and } e_2 = (0, 1, 0).$

- (a) Find Au.
- (b) Find Av.
- (c) Find Aw.
- (d) Find Ae_1 and Ae_2 . Let $e_3 = (0,0,1)$; guess what Ae_3 is, then compute it.

5. Let $M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} -1 & 0 & 4 \\ 1 & 1 & -2 \end{pmatrix}$. Evaluate the following expressions.

- (a) 3M (b) -2N (c) M+N (d) 3M-2N (e) M' (f) N' (g) (3M-2N)' (h) MM' (i) M'M (j) MN
- (j) MN'

6. Let $S = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 1 & 3 \\ -1 & 3 & -2 \end{pmatrix}$.

- (a) Find S'.
- (b) What special property does S have?
- (c) What is S + I. How do you know which identity matrix to add to S?
- (d) Find S^2 and S^3 .
- (e) Show that if T is any Hermitian matrix, then T^2 is Hermitian also.

7. Let
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 0 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -3 \\ -1 & 3 \\ -1 & 3 \end{pmatrix}$,

$$D = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
, and $E = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$. Evaluate the following expressions when possible; say

Undefined when the arithmetic in the expression cannot be carried out.

(a)
$$3A - 2B$$

(b)
$$AE$$

(g)
$$E'A$$

(c)
$$AB$$

(h) $AB' + D$

(i)
$$A^2$$

$$(i)$$
 D^2

8. Let
$$P = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -2 \\ 5 & 3 & -5 \end{pmatrix}$, and let D be the diagonal matrix $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

- (a) Find DP and DQ.
- (b) If E is the diagonal matrix with diagonal entries α , β , and γ , and R is a matrix, describe ER.
- (c) Find PD and QD.
- (d) If E is the diagonal matrix with diagonal entries α , β , and γ , and R is a matrix, describe

9. Let
$$S = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$
 and let $T = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & -2 \end{pmatrix}$.
Let $C_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, let $C_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, and let $C_3 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

- (a) Find SC_1 , SC_2 , and SC_3 .
- (b) Find ST and compare your answer with the results of part a).

10. (a) Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 2 \\ 2 & -1 & 1 \end{pmatrix}$$
 and let $B = \begin{pmatrix} -4 & -1 & 2 \\ -5 & -1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$. Explain why $A = B^{-1}$.

(b) Is $B = A^{-1}$? Explain!

(c) Let
$$C = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$
, and $D = \begin{pmatrix} -2 & 1 \\ -3 & 1 \\ 1 & 1 \end{pmatrix}$. Is $D = C^{-1}$? Explain!

11. Let
$$E = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
. Find a matrix $F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ so that $F = E^{-1}$.

- 12. (a) Show that if G is an invertible matrix, then G' is also invertible and $(G')^{-1} = (G^{-1})'$.
 - (b) Use your answer to part (a) and problem 10 above to find the inverse of $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & -1 \\ 0 & 2 & 1 \end{pmatrix}$.
- 13. Verify that if N is a matrix such that $N^4 = 0$, then

$$(I-N)^{-1} = I + N + N^2 + N^3.$$

WARNING! Such matrices are called *nilpotent* and are **not** necessarily 0.

For example, the matrix $M = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ satisfies $M^2 = 0$.

- 14. Let E be an $m \times n$ matrix.
 - (a) Show that EE' and E'E are both Hermitian.
 - (b) Give an example to show that these are not always the same.
 - (c) Show that if E is square, then E + E' is Hermitian.
- 15. Redo Exercises 7, 10, and 11 using a suitable machine. How does your machine react to undefined matrix operations?
- 16.

$$F = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3 \\ 4 & 2.6 & 0 & 3 \\ 3 & -.3 & 8 & 1.5 \end{pmatrix}$$

- (a) Use a suitable machine to find $G = F^{-1}$
- (b) Find the computed values of GF and GF I. Explain the output of your machine.

Exercises 1.3

1. Let
$$A = \begin{pmatrix} 4 & 3 & -2 \\ 2 & -5 & 6 \end{pmatrix}$$
 and let $B = \begin{pmatrix} 0 & -1 & 3 \\ 2 & -1 & 6 \\ 5 & 2 & 1 \end{pmatrix}$.

- (a) Find AB (from the definition) as a 2×3 matrix.
- (b) Partition A as $\left(A_{11} \mid A_{12}\right)$ and B as $\left(\frac{B_{11} \mid B_{12}}{B_{21} \mid B_{22}}\right)$, where both A_{11} and B_{11} are 2×2 matrices, that is, say what each of $A_{11}, A_{12}, \dots, B_{22}$ are.
- (c) Determine each of the relevant products from (b) above and find AB as a partitioned matrix.
- 2. Use partitioned matrices to show that if A is an $m \times n$ matrix and B is an $n \times p$ matrix whose k^{th} column is zero, then the k^{th} column of AB is zero.
- 3. Explore how your software handles block matrices.
 - (a) Enter the matrices

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 4 & 2.6 & 0 \\ 3 & -.3 & 8 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & -2 \\ 1.5 & 4 \end{pmatrix}$$

(b) Make a 4×5 matrix E from the matrices A, B, C, and D to get

$$E = \begin{pmatrix} 1 & 2 & -1 & 1 & -1 \\ 0 & -1 & 4 & 3 & 1 \\ \hline 4 & 2.6 & 0 & 3 & -2 \\ 3 & -.3 & 8 & 1.5 & 4 \end{pmatrix}$$

You probably do not need to retype all the entries! Note that $E = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

(c) Make a
$$4 \times 4$$
 matrix F from E by deleting its last column $F = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3 \\ 4 & 2.6 & 0 & 3 \\ 3 & -.3 & 8 & 1.5 \end{pmatrix}$

4. Prove: If a matrix is multiplied on the right by a diagonal matrix, the j^{th} column of the product is the j^{th} diagonal entry times the the j^{th} column of the original matrix. (Compare with Exercise 8)

4

5. Suppose A is a square matrix partitioned as

$$A = \left(\begin{array}{c|c} X & Y \\ \hline 0 & Z \end{array}\right)$$

where X and Z are square invertible matrices and 0 is a zero matrix.

(a) Find formulas for P, Q, R, and S so that the block matrix

$$\begin{pmatrix} P & Q \\ \hline R & S \end{pmatrix}$$

is A^{-1} . (Caution: matrix multiplication is not commutative!) If you are successful, you will have shown that matrices with the given block form are invertible.

(b) Use your formula to find A^{-1} when $X = \begin{pmatrix} -1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & -1 \end{pmatrix}$, and $Z = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ (Note that $Z^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$)

Exercises 2.1

1.
$$\begin{cases} w = 5 \\ 2w + x = 2 \\ w + x + y = -1 \\ w - x + 2y + z = 4 \end{cases}$$

3.
$$\begin{cases} 2w - x + 2y + z &= 1\\ x + y - z &= -2\\ 3y + z &= 0\\ 2z &= 6 \end{cases}$$

2.
$$\begin{cases} a+2b+c & = 2 \\ -a+3b-c+d & = 3 \\ a & = 4 \\ 2a+b & = -1 \end{cases}$$
4.
$$\begin{cases} 2w-x+2y+z & = 0 \\ x+y-z & = 0 \\ y-z & = 0 \end{cases}$$
(Hint: solve for $w = x$ as

4.
$$\begin{cases} 2w - x + 2y + z = 0 \\ x + y - z = 0 \\ y - z = 0 \end{cases}$$

terms of z. There will be infinitely many solutions, one for each value of z.)

5. Write each system in Problems 6–9 as a matrix equation.

Use your software to solve the following systems. Be sure to check your answers!

$$6. \begin{cases} x + 2y = 3 \\ 3x + 4y = -2 \end{cases}$$

8.
$$\begin{cases} w - y + 2z = 0 \\ -w + x + 3y - z = 5 \\ 2w + 5z = 3 \\ w + x + y + 2z = 4 \end{cases}$$

7.
$$\begin{cases} x - y + z &= 1 \\ -x + 3y + 3z &= 5 \\ 2x &+ 3z &= 4 \end{cases}$$

9.
$$\begin{cases} 2w + 3x + y - z &= 1\\ -w + 2x + 3y + z &= -1\\ 2w + x - 2y + 3z &= 0\\ w - x + y + 2z &= 2 \end{cases}$$

10. The five-tuples (2, 2, 1, -1, 1) and (1, 1, 2, -1, -1) are both solutions of the system:

$$\begin{cases} a+b+4c+d+e &= 8\\ a-b+2c+2d+e &= 1\\ 2a+b-c-d-2e &= 4\\ b+3c+d+e &= 5\\ 2a-b+c+3d &= 0 \end{cases}$$

(a) Without using Gaussian elimination or a machine, write down two non-trivial solutions of the associated homogeneous system.

6

(b) Write down two other solutions of the given system.

11. Let A be the matrix

$$\left(\begin{array}{cccc}
1 & -1 & 2 & 1 \\
2 & 1 & -3 & -1 \\
1 & 1 & 3 & -2 \\
-1 & 2 & -2 & 3
\end{array}\right)$$

and let b = (3, -1, 3, 2) and let c = (0, 4, -4, 4).

- (a) Check that Y=(1,1,1,1) solves the system AX=b and that Z=(1,0,-1,1) solves the system AX=c.
- (b) Without using Gaussian Elimination or a machine, find a solution of the system AX = (6, -2, 6, 4) = 2b.
- (c) Without using Gaussian Elimination or a machine, find a solution of the system AX = (3, 3, -1, 6) = b + c.
- (d) Without using Gaussian Elimination or a machine, find a solution of the system AX = (9, 5, 1, 14) = 3b + 2c.