A First Look at Circle Packing in the Plane

Connor Kempf
IUPUI

April 2022

- Given a certain radius, how densely can we pack circles of that radius in the plane?
- It was long conjectured that the densest possible packing was the hexagonal packing
- The hexagonal packing achieves a density of $\frac{\pi}{2 \sqrt{3}}$
- This conjecture was proven by Gauss.
- This presentation will offer a solution to this problem.
- What is a lattice in \mathbb{R}^{2} ?
- Take two linearly independent vectors x_{1}, x_{2} in \mathbb{R}^{2}.
- The set of all integer combinations of these vectors is a lattice.
- That is, $\left\{a x_{1}+b x_{2}: a, b \in \mathbb{Z}\right\}$ is the corresponding lattice.

Figure: Camia and Newman. 'Portion of the Hexagonal Lattice.'

- B is a matrix with column vectors x_{1}, x_{2}.
- $\mathrm{L}=\left\{a x_{1}+b x_{2}: a, b \in \mathbb{Z}\right\}$
- $\operatorname{det}(\mathrm{L}):=|\operatorname{det}(\mathrm{B})|$
- $\operatorname{det}(\mathrm{L})$ is the area of the parallelogram with sides x_{1} and x_{2}.

A Voronoi cell in a lattice L is described by the set of points $\left\{x \in \mathbb{R}^{2}:\|x\| \leq\|x-y\| \forall y \in \mathbb{R}^{2}\right\}$.

This is somewhat difficult to visualize simply from the definition, but Voronoi cells have relatively nice geometric constructions, as is shown below.

Figure: Identifying the shape of a Voronoi cell. From Wikipedia.

- Placing the Voronoi cell of a lattice at each lattice point will always tile the plane.
- The area of the Voronoi cell of a lattice will always be $\operatorname{det}(\mathrm{L})$.
- This can be seen by considering the basis matrix B of L as a transformation.
- Squares are stretched by a factor of $|\operatorname{det}(\mathrm{B})|=\operatorname{det}(\mathrm{L})$
- The images of $\mathrm{n} \times \mathrm{n}$ squares are also (approximately) covered by $\mathrm{n} \times \mathrm{n}$ many Voronoi cells after the transformation.

Lattices and Voronoi cells are used to define regular circle packings.

Figure: Packing circles in the Voronoi cells of the hexagonal lattice. Fukshansky.

- Circles are centered at lattice points
- Circles are as large as possible while still being contained in Voronoi cells

The radius r of such a circle must be $\frac{\lambda}{2}$, where λ is the least possible number such that a circle with radius λ centered at the origin contains a nonzero lattice point. (Refer again to the figure showing how to draw a Voronoi cell.)

The density of circles packed in a lattice $\mathrm{L}, \Delta(\mathrm{L})=\frac{\text { Area of a circle }}{\text { Area of a Voronoi cell }}=\frac{(\pi) r^{2}}{\operatorname{det}(L)}$.

Observe that, for any lattice in which a circle packed in its Voronoi cell is not tangent to all sides of that cell, that lattice cannot have achieved maximal density.

Figure: Identifying the shape of a Voronoi cell. From Wikipedia.

- It follows that, for a maximally dense lattice $\mathrm{L},\left\|x_{1}\right\|=\left\|x_{2}\right\|=2$ r.
- We are free to assume that the angle θ between x_{1} and x_{2} will be in $\left(0, \frac{\pi}{2}\right]$.
- The area of the parallelogram bound by x_{1} and x_{2} will be $\operatorname{det}(\mathrm{L})=2 \mathrm{r} \times 2 \mathrm{r}(\sin \theta)$
- So, $\Delta(\mathrm{L})=\frac{\pi}{4 \sin (\theta)}$
- The density of our arrangement increases with decreasing (positive) θ.
- We must immediately suspect that there is some minimum possible θ.
θ must be at least $\frac{\pi}{3}$, or else there will be lattice points within a distance $\frac{\lambda}{2}$ of the origin, where λ is the minimum distance.

Figure: In the event that $\theta<\frac{\pi}{3}$, the difference of x_{1} and x_{2} produces a new lattice point, closer to the origin than allowed.

The hexagonal lattice has basis vectors $x_{1}=(1,0)$ and $x_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, the angle between which is $\frac{\pi}{3}$, so it achieves maximal density.

- We have discussed the notions of lattices and Voronoi cells
- We have used these concepts to describe regular circle packings in full generality
- Using these tools, we have proven that the hexagonal packing of circles in the plane is as dense as is possible for a regular packing!

Camia, Frederico: "Portion of the Hexagonal Lattice."
https://www.researchgate.net/figure/
Portion-of-the-hexagonal-lattice_fig1_2118910
Fukshansky, Lenny: "Revisiting the Hexagonal Lattice: On Optimal Circle Packing." The Swiss Mathematical Society, 2011.

Wikipedia:
https://en.wikipedia.org/wiki/Wigner\�\�\�Seitz_cell

