La Théorie Spectrale des Graphes (Spectral (Graph Theory)), not ((spectral graph) theory)

Croix Gyurek

April 27, 2022

Croix Gyurek La Théorie Spectrale des Graphes

イロン 不問 とくほ とくほとう

Introduction

Why It Matters

Drawing Graphs

Why Does This Work?

References

Croix Gyurek La Théorie Spectrale des Graphes

Matrix Definitions

▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian

Croix Gyurek La Théorie Spectrale des Graphes

イロン 不問 とくほ とくほとう

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.
 - note: $A_{i,i} = 0$ since we are using simple graphs here

(日) (周) (王) (王)

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.

• note: $A_{i,i} = 0$ since we are using simple graphs here

Example: 4-path

$$\underbrace{(v_1)}_{v_2} \underbrace{(v_3)}_{v_3} \underbrace{(v_4)}_{v_4} A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.
- Laplacian:

(日) (周) (王) (王)

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.
- Laplacian:

$$\blacktriangleright L_{i,i} = deg(v_i).$$

(日) (周) (王) (王)

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.
- Laplacian:

$$\blacktriangleright L_{i,i} = deg(v_i).$$

For $i \neq j$: $L_{i,j} = -1$ if v_i is connected to v_j , else 0.

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.
- Laplacian:

$$\blacktriangleright L_{i,i} = deg(v_i).$$

- For $i \neq j$: $L_{i,j} = -1$ if v_i is connected to v_j , else 0.
- For the 4-path again:

$$\underbrace{(v_1)}_{v_2} \underbrace{(v_3)}_{v_3} \underbrace{(v_4)}_{v_4} L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Matrix Definitions

- ▶ Graph G = (V, E) where V = {v₁,..., v_n} has 2 associated matrices, Adjacency and Laplacian
- Adjacency: $A_{i,j} = 1$ if v_i is connected to v_j ; else 0.
- Laplacian:
 - $L_{i,i} = deg(v_i).$
 - For $i \neq j$: $L_{i,j} = -1$ if v_i is connected to v_j , else 0.
 - For the 4-path again:

$$\underbrace{(v_1)}_{v_2} \underbrace{(v_2)}_{v_3} \underbrace{(v_4)}_{v_4} L = \begin{bmatrix} 1 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ 0 & 0 & -1 & 1 \end{bmatrix}$$
Notice rows and columns of *L* sum to 0

Notice rows and columns of L sum to 0.

Adjacency and Laplacian Eigenvalues

▶ The eigenvalues of A and L tell us a lot about the graph!

イロト イポト イヨト

Adjacency and Laplacian Eigenvalues

- The eigenvalues of A and L tell us a lot about the graph!
- We list the adjacency eigenvalues in *descending* order α₁ ≥ α₂ ≥ · · · ≥ α_n,
- but the Laplacian eigenvalues in ascending order λ₁ ≤ λ₂ ≤ · · · ≤ λ_n.

Adjacency and Laplacian Eigenvalues

- The eigenvalues of A and L tell us a lot about the graph!
- We list the adjacency eigenvalues in *descending* order α₁ ≥ α₂ ≥ · · · ≥ α_n,
- but the Laplacian eigenvalues in ascending order λ₁ ≤ λ₂ ≤ · · · ≤ λ_n.
- If G is d-regular (all vertices have degree d) then L = dI − A so λ_i = d − α_i and eigenvectors are the same

Adjacency and Laplacian Eigenvalues

- ▶ The eigenvalues of A and L tell us a lot about the graph!
- We list the adjacency eigenvalues in *descending* order α₁ ≥ α₂ ≥ · · · ≥ α_n,
- but the Laplacian eigenvalues in ascending order λ₁ ≤ λ₂ ≤ · · · ≤ λ_n.
- If G is d-regular (all vertices have degree d) then L = dI − A so λ_i = d − α_i and eigenvectors are the same
- Spectral Theorem: both A and L have an orthonormal basis (n mutually orthogonal eigenvectors) since they're symmetric

Useful Product Identities

Both A and L play nice with dot products. For $\mathbf{v} \in \mathbb{R}^n$:

$$\boldsymbol{v} \cdot A \boldsymbol{v} = \sum_{(i,j) \in E} v_i v_j$$
$$\boldsymbol{v} \cdot L \boldsymbol{v} = \sum_{(i,j) \in E} (v_i - v_j)^2$$

イロン 不良と 不良と 不良とう 見

Laplacian version will be used later on...

Useful Product Identities

Both *A* and *L* play nice with dot products. For $\mathbf{v} \in \mathbb{R}^n$:

$$oldsymbol{v}\cdot Loldsymbol{v} = \sum_{(i,j)\in E} (v_i - v_j)^2$$

イロン 不良と 不良と 不良とう 見

Laplacian version will be used later on...

Useful Product Identities

Both *A* and *L* play nice with dot products. For $\mathbf{v} \in \mathbb{R}^n$:

$$\boldsymbol{v} \cdot A \boldsymbol{v} = \sum_{(i,j) \in E} v_i v_j$$
$$\boldsymbol{v} \cdot L \boldsymbol{v} = \sum_{(i,j) \in E} (v_i - v_j)^2$$

イロン 不同 とくほと 不良とう

Useful Product Identities

Both *A* and *L* play nice with dot products. For $\mathbf{v} \in \mathbb{R}^n$:

$$\boldsymbol{v} \cdot A \boldsymbol{v} = \sum_{(i,j) \in E} v_i v_j$$
$$\boldsymbol{v} \cdot L \boldsymbol{v} = \sum_{(i,j) \in E} (v_i - v_j)^2$$

Laplacian version will be used later on...

Spectral Bounds

Simple examples:

▶
$$\alpha_1 \leq d_{max}$$
 and $\alpha_n \geq -d_{max}$

イロン イワン イヨン イヨン

Э

Spectral Bounds

Simple examples:

•
$$\alpha_1 \leq d_{max}$$
 and $\alpha_n \geq -d_{max}$

イロン イワン イヨン イヨン

Э

Spectral Bounds

Simple examples:

•
$$\alpha_1 \leq d_{max}$$
 and $\alpha_n \geq -d_{max}$
• *G* is *d*-regular if all vertices have

イロト イヨト イヨト イヨト

degree d

Spectral Bounds

Simple examples:

イロン 不良 とくほど 不良とう

Э

Spectral Bounds

Simple examples:

▶
$$\alpha_1 \leq d_{max}$$
 and $\alpha_n \geq -d_{max}$

G is d-regular if all vertices have degree d

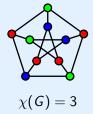
• If G is d-regular,
$$\alpha_1 = d$$
 since $A\mathbb{1} = d\mathbb{1}$ where $\mathbb{1} = (1, 1, \dots, 1)$

• $\alpha_n = -\alpha_1$ iff *G* is bipartite

λ₁ = 0; multiplicity of 0 = # connected components of G
 L1 = 0

More Classical Graph Theory

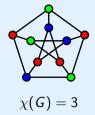
Chromatic number $\chi(G) = \min \#$ of colors for vertices so no same-color vertices share an edge



More Classical Graph Theory

Chromatic number $\chi(G) = \min \#$ of colors for vertices so no same-color vertices share an edge

• Classical result: $\chi(G) \leq 1 + d_{max}(G)$.

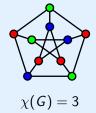


More Classical Graph Theory

Chromatic number $\chi(G) = \min \#$ of colors for vertices so no same-color vertices share an edge

• Classical result: $\chi(G) \leq 1 + d_{max}(G)$.

Independence number ind $G = \max \#$ of vertices that can be picked so no 2 are adjacent

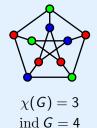


More Classical Graph Theory

Chromatic number $\chi(G) = \min \#$ of colors for vertices so no same-color vertices share an edge

• Classical result: $\chi(G) \leq 1 + d_{max}(G)$.

Independence number ind $G = \max \#$ of vertices that can be picked so no 2 are adjacent



Spectral Bounds

Chromatic number:

• Classical result: $\chi(G) \leq 1 + d_{max}(G)$.

Spectral Bounds

Chromatic number:

Classical result: χ(G) ≤ 1 + d_{max}(G). Spectral version is stronger: χ(G) ≤ 1 + α_{max}

Croix Gyurek La Théorie Spectrale des Graphes

Spectral Bounds

Chromatic number:

Classical result: χ(G) ≤ 1 + d_{max}(G). Spectral version is stronger: χ(G) ≤ 1 + α_{max}

• Lower bound:
$$\chi(G) \ge 1 + \frac{\alpha_{max}}{-\alpha_{min}}$$

Spectral Bounds

Chromatic number:

Classical result: χ(G) ≤ 1 + d_{max}(G). Spectral version is stronger: χ(G) ≤ 1 + α_{max}

• Lower bound:
$$\chi(G) \ge 1 + \frac{\alpha_{max}}{-\alpha_{min}}$$

Independence number: ind $G \leq n \left(1 - \frac{d_{min}}{\lambda_{max}}\right)$

(日) (周) (王) (王)

Introduction

Why It Matters

Drawing Graphs

Why Does This Work?

References

Croix Gyurek La Théorie Spectrale des Graphes

ヘロア 人間 アメヨアメヨア

Э

Sometimes you have a graph...

Croix Gyurek La Théorie Spectrale des Graphes

Sometimes you have a graph...

- How to draw a graph in plane or 3-space?
- Intuitively: adjacent vertices "close"

Sometimes you have a graph...

- How to draw a graph in plane or 3-space?
- Intuitively: adjacent vertices "close"
- Eigenvectors of L can give nice pictures

イロト イポト イヨト

Procedure

Assume G is connected.

1. Find eigenvalues
$$0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

イロン イヨン イヨン イヨン

Э

Procedure

Assume G is connected.

- 1. Find eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$
- 2. Find eigenvectors $v_1 = 1, v_2, \ldots, v_n$

Procedure

Assume G is connected.

- 1. Find eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$
- 2. Find eigenvectors $v_1 = 1, v_2, \ldots, v_n$
- 3. v_1 is useless (all 1's) so look at v_2 and v_3 (and v_4 for 3D)
 - Important: choose v's unit-length and perpendicular

Procedure

Assume G is connected.

- 1. Find eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$
- 2. Find eigenvectors $v_1 = 1, v_2, \ldots, v_n$
- 3. v₁ is useless (all 1's) so look at v₂ and v₃ (and v₄ for 3D)
 Important: choose v's unit-length and perpendicular
- 4. Use *j*-th coordinate of each *v*: vertex *j* goes at $(v_{2,j}, v_{3,j})$.

Example: 6-cycle with an extra edge

$$L = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

イロト イヨト イヨト イヨト

Croix Gyurek La Théorie Spectrale des Graphes

Example: 6-cycle with an extra edge

$$L = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

イロト イポト イヨト イヨト

Eigenvalues: 0, 1, 2, 3, 3, 5. Eigenvectors: $v_2 = (-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{2})^T$ and $v_3 = \frac{1}{\sqrt{6}} (1, 1, 1, -1, -1, -1)^T$

Example: 6-cycle with an extra edge

$$L = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

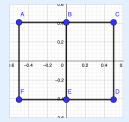
イロト イポト イヨト イヨト

Eigenvalues: 0, 1, 2, 3, 3, 5. Eigenvectors: $v_2 = (-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{2})^T$ and $v_3 = \frac{1}{\sqrt{6}} (1, 1, 1, -1, -1, -1)^T$ Thus $A = (-\frac{1}{2}, \frac{1}{\sqrt{6}}), B = (0, \frac{1}{\sqrt{6}})$, etc

Example: 6-cycle with an extra edge

$$L = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

Eigenvalues: 0, 1, 2, 3, 3, 5. Eigenvectors: $v_2 = (-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{2})^T$ and $v_3 = \frac{1}{\sqrt{6}} (1, 1, 1, -1, -1, -1)^T$ Thus $A = (-\frac{1}{2}, \frac{1}{\sqrt{6}}), B = (0, \frac{1}{\sqrt{6}})$, etc



イロト イポト イヨト

Example: Icosahedron

 12 vertices, 30 edges. Graph is regular since all vertices have degree 5.

Example: Icosahedron

- 12 vertices, 30 edges. Graph is regular since all vertices have degree 5.
- Eigenvalues: $\lambda_1 = 0; \lambda_{2,3,4} = 5 - \sqrt{5}; \lambda_{5,6,7,8,9} = 6; \lambda_{10,11,12} = 5 + \sqrt{5}$

Example: Icosahedron

 12 vertices, 30 edges. Graph is regular since all vertices have degree 5.

Eigenvalues:

 $\lambda_1 = 0; \lambda_{2,3,4} = 5 - \sqrt{5}; \lambda_{5,6,7,8,9} = 6; \lambda_{10,11,12} = 5 + \sqrt{5}$

Drawing in a 2D plane: there's ambiguity! This graph lives in 3D space.

Example: Icosahedron

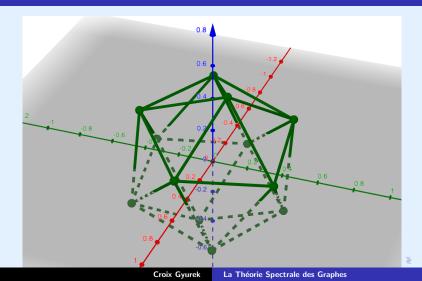
 12 vertices, 30 edges. Graph is regular since all vertices have degree 5.

Eigenvalues:

 $\lambda_1 = 0; \lambda_{2,3,4} = 5 - \sqrt{5}; \lambda_{5,6,7,8,9} = 6; \lambda_{10,11,12} = 5 + \sqrt{5}$

- Drawing in a 2D plane: there's ambiguity! This graph lives in 3D space.
- So let's use the coordinates of v₂, v₃, v₄.

Icosahedron



Icosahedron with an Axis Edge

Now let's connect a single pair of opposite vertices

Croix Gyurek La Théorie Spectrale des Graphes

Icosahedron with an Axis Edge

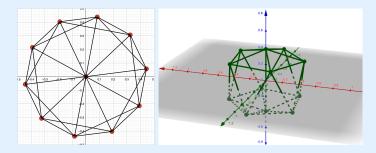
- Now let's connect a single pair of opposite vertices
- Eigenvalues now: $\lambda_{2,3} = 5 \sqrt{5}$ but $\lambda_4 = 6 \sqrt{6}$.

Icosahedron with an Axis Edge

- Now let's connect a single pair of opposite vertices
- Eigenvalues now: $\lambda_{2,3} = 5 \sqrt{5}$ but $\lambda_4 = 6 \sqrt{6}$.
- 2D eigenspace not ambiguous, but 3D is better.

Icosahedron with an Axis Edge

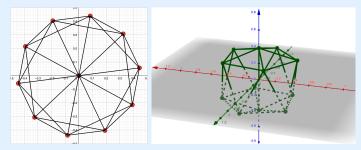
- Now let's connect a single pair of opposite vertices
- Eigenvalues now: $\lambda_{2,3} = 5 \sqrt{5}$ but $\lambda_4 = 6 \sqrt{6}$.
- > 2D eigenspace not ambiguous, but 3D is better.



イロン 不同 とくほと 不良 とう

Icosahedron with an Axis Edge

- Now let's connect a single pair of opposite vertices
- Eigenvalues now: $\lambda_{2,3} = 5 \sqrt{5}$ but $\lambda_4 = 6 \sqrt{6}$.
- > 2D eigenspace not ambiguous, but 3D is better.



Notice the icosahedron is squished a bit!

イロン 不同 とくほど 不良 とう

Sometimes it doesn't always work...

Fano plane incidence graph: 14-vertex bipartite graph based on 7-point projective plane (point adj. to line if incident)

イロト イボト イヨト

Sometimes it doesn't always work...

- Fano plane incidence graph: 14-vertex bipartite graph based on 7-point projective plane (point adj. to line if incident)
- ▶ Problem: $\lambda_{2..7}$ all equal $3 \sqrt{2}$. 3D embedding is ambiguous.

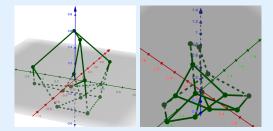


Figure: Two views of the same embedding.

・ロン ・回 と ・ヨン ・ヨン

Sometimes it doesn't always work...

- Fano plane incidence graph: 14-vertex bipartite graph based on 7-point projective plane (point adj. to line if incident)
- ▶ Problem: $\lambda_{2..7}$ all equal $3 \sqrt{2}$. 3D embedding is ambiguous.
- This means the Fano plane graph is naturally six-dimensional!

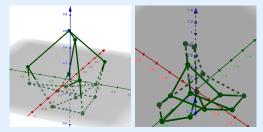


Figure: Two views of the same embedding.

Introduction

Why It Matters

Drawing Graphs

Why Does This Work?

References

Croix Gyurek La Théorie Spectrale des Graphes

イロン 不得 とくほど 不足とう

Э

Courant-Fischer Theorem

Theorem (Courant-Fischer)

Let L be a symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_{k} = \min_{\substack{S \subseteq \mathbb{R}^{n} \\ \dim(S) = k}} \max_{\mathbf{x} \in S \setminus \{0\}} \frac{\mathbf{x} \cdot L\mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} = \max_{\substack{T \subseteq \mathbb{R}^{n} \\ \dim(T) = n-k+1}} \min_{\mathbf{x} \in T \setminus \{0\}} \frac{\mathbf{x} \cdot L\mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}$$

where S, T are required to be subspaces of \mathbb{R}^n .

イロト イポト イラト イラト

Courant-Fischer Theorem

Theorem (Courant-Fischer)

Let L be a symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_{k} = \min_{\substack{S \subseteq \mathbb{R}^{n} \\ \dim(S) = k}} \max_{\mathbf{x} \in S \setminus \{0\}} \frac{\mathbf{x} \cdot L\mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} = \max_{\substack{T \subseteq \mathbb{R}^{n} \\ \dim(T) = n-k+1}} \min_{\mathbf{x} \in T \setminus \{0\}} \frac{\mathbf{x} \cdot L\mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}$$

where S, T are required to be subspaces of \mathbb{R}^n .

The eigenvectors \boldsymbol{v}_k are solutions.

イロト イポト イヨト

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.

• "Adjacent vertices close"
$$\Rightarrow$$
 minimize $\sum_{(i,j)\in E} (x_i - x_j)^2$

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

- Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.
- "Adjacent vertices close" \Rightarrow minimize $\sum_{(i,j)\in E} (x_i x_j)^2$

Remember: this is x · Lx

イロト イポト イラト イラト

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

- Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.
- "Adjacent vertices close" \Rightarrow minimize $\sum_{(i,j)\in E} (x_i x_j)^2$

Remember: this is x · Lx

• Trivial solution: $x_j \equiv 0$. So let's enforce $\|\mathbf{x}\| = 1$.

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

- ▶ Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.
- "Adjacent vertices close" \Rightarrow minimize $\sum_{(i,j)\in E} (x_i x_j)^2$

Remember: this is x · Lx

- Trivial solution: $x_j \equiv 0$. So let's enforce $\|\mathbf{x}\| = 1$.
- Trivial solution: $x_j \equiv 1/\sqrt{n}$. Let's enforce $\sum_j x_j = 0$.

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

- Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.
- "Adjacent vertices close" \Rightarrow minimize $\sum_{(i,j)\in E} (x_i x_j)^2$

Remember: this is x · Lx

- So we're minimizing $x \cdot Lx$ subject to $x \perp 1$ and ||x|| = 1.
- The solution is $\mathbf{x} = v_2$ by CF!

イロト イポト イラト イラト

Basic Idea: The One-Dimensional Case

Suppose we want to "draw" G on a line.

- Assign $x_j \in \mathbb{R}$ to each vertex $j \Rightarrow$ pick a vector $\mathbf{x} \in \mathbb{R}^n$.
- "Adjacent vertices close" \Rightarrow minimize $\sum_{(i,j)\in E} (x_i x_j)^2$

Remember: this is x · Lx

- So we're minimizing $\mathbf{x} \cdot L\mathbf{x}$ subject to $\mathbf{x} \perp \mathbb{1}$ and $||\mathbf{x}|| = 1$.
- The solution is $\mathbf{x} = v_2$ by CF!

Similarly, requiring $\boldsymbol{x} \perp \boldsymbol{y}$ gives $\boldsymbol{y} = \boldsymbol{v}_3$, etc.

- Bogdan Nica, *A Brief Introduction to Spectral Graph Theory*, European Mathematical Society, 2018.
- D. Spielman: Spectral graph theory, in 'Combinatorial scientific computing', 495–524, CRC Press 2012
 All figures made with GeoGebra