
Introduction
Why It Matters
Drawing Graphs

Why Does This Work?
References
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Matrix Definitions

I Graph G = (V ,E ) where V = {v1, . . . , vn} has 2 associated
matrices, Adjacency and Laplacian

I Adjacency: Ai ,j = 1 if vi is connected to vj ; else 0.
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I note: Ai,i = 0 since we are using simple graphs here
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Matrix Definitions

I Graph G = (V ,E ) where V = {v1, . . . , vn} has 2 associated
matrices, Adjacency and Laplacian

I Adjacency: Ai ,j = 1 if vi is connected to vj ; else 0.
I note: Ai,i = 0 since we are using simple graphs here

Example: 4-path

v1 v2 v3 v4 A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0
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Matrix Definitions

I Graph G = (V ,E ) where V = {v1, . . . , vn} has 2 associated
matrices, Adjacency and Laplacian

I Adjacency: Ai ,j = 1 if vi is connected to vj ; else 0.
I Laplacian:

I Li,i = deg(vi ).
I For i 6= j : Li,j = −1 if vi is connected to vj , else 0.
I For the 4-path again:
I Notice rows and columns of L sum to 0.
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matrices, Adjacency and Laplacian

I Adjacency: Ai ,j = 1 if vi is connected to vj ; else 0.
I Laplacian:
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I Notice rows and columns of L sum to 0.
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Adjacency and Laplacian Eigenvalues

I The eigenvalues of A and L tell us a lot about the graph!

I We list the adjacency eigenvalues in descending order
α1 ≥ α2 ≥ · · · ≥ αn,

I but the Laplacian eigenvalues in ascending order
λ1 ≤ λ2 ≤ · · · ≤ λn.

I If G is d-regular (all vertices have degree d) then L = dI − A
so λi = d − αi and eigenvectors are the same

I Spectral Theorem: both A and L have an orthonormal basis
(n mutually orthogonal eigenvectors) since they’re symmetric
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Useful Product Identities

Both A and L play nice with dot products. For v ∈ Rn:

v · Av =
∑

(i ,j)∈E

vivj

v · Lv =
∑

(i ,j)∈E

(vi − vj)
2

Laplacian version will be used later on...
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Spectral Bounds

Simple examples:

I α1 ≤ dmax and αn ≥ −dmax

I G is d-regular if all vertices have degree d
I If G is d-regular, α1 = d since A1 = d1 where

1 = (1, 1, . . . , 1)

I αn = −α1 iff G is bipartite
I λ1 = 0; multiplicity of 0 = # connected components of G

I L1 = 0
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More Classical Graph Theory

Chromatic number χ(G ) = min # of colors for
vertices so no same-color vertices share an edge

I Classical result: χ(G ) ≤ 1 + dmax(G ).

Independence number indG = max # of
vertices that can be picked so no 2 are adjacent

χ(G ) = 3

indG = 4

Croix Gyurek La Théorie Spectrale des Graphes



Introduction
Why It Matters
Drawing Graphs

Why Does This Work?
References

More Classical Graph Theory

Chromatic number χ(G ) = min # of colors for
vertices so no same-color vertices share an edge

I Classical result: χ(G ) ≤ 1 + dmax(G ).

Independence number indG = max # of
vertices that can be picked so no 2 are adjacent

χ(G ) = 3

indG = 4
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Spectral Bounds

Chromatic number:

I Classical result: χ(G ) ≤ 1 + dmax(G ).

Spectral version is stronger: χ(G ) ≤ 1 + αmax

I Lower bound: χ(G ) ≥ 1 + αmax
−αmin

Independence number: indG ≤ n
(

1− dmin
λmax

)
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Sometimes you have a graph...

I How to draw a graph in plane or 3-space?

I Intuitively: adjacent vertices “close”

I Eigenvectors of L can give nice pictures

Croix Gyurek La Théorie Spectrale des Graphes



Introduction
Why It Matters
Drawing Graphs

Why Does This Work?
References

Sometimes you have a graph...

I How to draw a graph in plane or 3-space?

I Intuitively: adjacent vertices “close”

I Eigenvectors of L can give nice pictures
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Procedure

Assume G is connected.

1. Find eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

2. Find eigenvectors v1 = 1, v2, . . . , vn
3. v1 is useless (all 1’s) so look at v2 and v3 (and v4 for 3D)

I Important: choose v ’s unit-length and perpendicular

4. Use j-th coordinate of each v : vertex j goes at (v2,j , v3,j).

Croix Gyurek La Théorie Spectrale des Graphes



Introduction
Why It Matters
Drawing Graphs

Why Does This Work?
References

Procedure

Assume G is connected.

1. Find eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn
2. Find eigenvectors v1 = 1, v2, . . . , vn

3. v1 is useless (all 1’s) so look at v2 and v3 (and v4 for 3D)
I Important: choose v ’s unit-length and perpendicular

4. Use j-th coordinate of each v : vertex j goes at (v2,j , v3,j).
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Example: 6-cycle with an extra edge

L =


2 −1 0 0 0 −1
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 −1 0 −1 3 −1
−1 0 0 0 −1 2



Eigenvalues: 0, 1, 2, 3, 3, 5. Eigenvectors:
v2 = (−1

2 , 0,
1
2 ,

1
2 , 0,−

1
2)T and

v3 = 1√
6

(1, 1, 1,−1,−1,−1)T

Thus A = (−1
2 ,

1√
6

),B = (0, 1√
6

), etc
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Example: Icosahedron

I 12 vertices, 30 edges. Graph is regular since all vertices have
degree 5.

I Eigenvalues:
λ1 = 0;λ2,3,4 = 5−

√
5;λ5,6,7,8,9 = 6;λ10,11,12 = 5 +

√
5

I Drawing in a 2D plane: there’s ambiguity! This graph lives in
3D space.

I So let’s use the coordinates of v2, v3, v4.
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Croix Gyurek La Théorie Spectrale des Graphes



Introduction
Why It Matters
Drawing Graphs

Why Does This Work?
References

Example: Icosahedron

I 12 vertices, 30 edges. Graph is regular since all vertices have
degree 5.

I Eigenvalues:
λ1 = 0;λ2,3,4 = 5−

√
5;λ5,6,7,8,9 = 6;λ10,11,12 = 5 +

√
5

I Drawing in a 2D plane: there’s ambiguity! This graph lives in
3D space.

I So let’s use the coordinates of v2, v3, v4.
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Icosahedron
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Icosahedron with an Axis Edge

I Now let’s connect a single pair of opposite vertices

I Eigenvalues now: λ2,3 = 5−
√

5 but λ4 = 6−
√

6.

I 2D eigenspace not ambiguous, but 3D is better.

Notice the icosahedron is squished a bit!
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Sometimes it doesn’t always work...

I Fano plane incidence graph: 14-vertex bipartite graph based
on 7-point projective plane (point adj. to line if incident)

I Problem: λ2..7 all equal 3−
√

2. 3D embedding is ambiguous.
I This means the Fano plane graph is naturally six-dimensional!

Figure: Two views of the same embedding.
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Figure: Two views of the same embedding.
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Courant-Fischer Theorem

Theorem (Courant-Fischer)

Let L be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Then,

λk = min
S⊆Rn

dim(S)=k

max
x∈S\{0}

x · Lx
x · x

= max
T⊆Rn

dim(T )=n−k+1

min
x∈T\{0}

x · Lx
x · x

where S ,T are required to be subspaces of Rn.

The eigenvectors vk are solutions.
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Basic Idea: The One-Dimensional Case

Suppose we want to “draw” G on a line.

I Assign xj ∈ R to each vertex j ⇒ pick a vector x ∈ Rn.

I “Adjacent vertices close” ⇒ minimize
∑

(i ,j)∈E
(xi − xj)

2

I Remember: this is x · Lx

I So we’re minimizing x · Lx subject to x ⊥ 1 and ‖x‖ = 1.

I The solution is x = v2 by CF!

Similarly, requiring x ⊥ y gives y = v3, etc.
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Basic Idea: The One-Dimensional Case

Suppose we want to “draw” G on a line.

I Assign xj ∈ R to each vertex j ⇒ pick a vector x ∈ Rn.

I “Adjacent vertices close” ⇒ minimize
∑

(i ,j)∈E
(xi − xj)

2

I Remember: this is x · Lx
I Trivial solution: xj ≡ 0. So let’s enforce ‖x‖ = 1.

I So we’re minimizing x · Lx subject to x ⊥ 1 and ‖x‖ = 1.

I The solution is x = v2 by CF!
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Basic Idea: The One-Dimensional Case

Suppose we want to “draw” G on a line.

I Assign xj ∈ R to each vertex j ⇒ pick a vector x ∈ Rn.

I “Adjacent vertices close” ⇒ minimize
∑

(i ,j)∈E
(xi − xj)

2

I Remember: this is x · Lx
I Trivial solution: xj ≡ 0. So let’s enforce ‖x‖ = 1.

I Trivial solution: xj ≡ 1/
√
n. Let’s enforce

∑
j xj = 0.

I So we’re minimizing x · Lx subject to x ⊥ 1 and ‖x‖ = 1.

I The solution is x = v2 by CF!

Similarly, requiring x ⊥ y gives y = v3, etc.
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