
GAUSS SUMS

BOGDAN NICA

Comme quelqu’un pourrait dire de moi, que j’ai seulement fait ici
un amas de fleurs étrangères: n’y ayant fourni du mien, que le filet
à les lier. (Michel de Montaigne, Essais)

This is an essay on Gauss sums and some of their applications.
In the first part we consider quadratic Gauss sums of odd order, the core result

being the evaluation of these sums. This turns out to be a by-product of a differ-
ent question, of independent interest: that of finding the eigenvalues of the Fourier
matrix. As applications, we prove the law of quadratic reciprocity, we derive some
elementary but non-trivial trigonometric identities, and we discuss the diagonaliza-
tion of the Jacobsthal matrix.

In the second part, we consider more general Gauss sums, but only of prime
order. Here the viewpoint is more algebraic; to begin with, we need the character
theory of finite abelian groups. Gauss sums cannot be evaluated, in general, beyond
their absolute value. This fact is already very useful; we use it to estimate some
character sums–notably, we prove the Pólya–Vinogradov inequality. We also use
Gauss sums to diagonalize the Fourier matrix of prime order.
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1. Quadratic Gauss sums

1.1. Roots of unity. Let

ζn = e2πi/n = cos

(
2π

n

)
+ i sin

(
2π

n

)
denote the ‘first’ n-th root of unity in C∗. Since ζn has multiplicative order n, it
follows that

n−1∑
k=0

ζrkn =

{
n if n | r,
0 otherwise.

(1)

In turn, this implies–by a calculation left to the reader–the following fact.

Lemma 1.1. For any choice of a0, . . . , an−1 ∈ C, we have
n−1∑
k=0

∣∣∣ n−1∑
j=0

ajζ
jk
n

∣∣∣2 = n
n−1∑
k=0

|ak|2.(2)

As a concrete instance of (2), we record the following identity. Here, and through-
out these notes, |A| denotes the cardinality of a finite set A.

Corollary 1.2. Let A ⊆ {0, . . . , n− 1}. Then
n−1∑
k=0

∣∣∣∑
j∈A

ζjkn

∣∣∣2 = n|A|.(3)

Application 1.3. Consider two subsets A,B ⊆ {0, . . . , n− 1}. We claim that∣∣∣∑
a∈A

∑
b∈B

ζabn

∣∣∣ ≤√n|A||B|.(4)

Indeed, we have∣∣∣∑
a∈A

∑
b∈B

ζabn

∣∣∣ ≤∑
a∈A

∣∣∣∑
b∈B

ζabn

∣∣∣ ≤√|A|∑
a∈A

∣∣∣∑
b∈B

ζabn

∣∣∣2
by the Cauchy-Schwarz inequality. Next, by (3) we have∑

a∈A

∣∣∣∑
b∈B

ζabn

∣∣∣2 ≤ n−1∑
a=0

∣∣∣∑
b∈B

ζabn

∣∣∣2 = n|B|.

By combining the two inequalities we obtain (4).
By reading off the real and the imaginary part, (4) implies the following inequal-

ities for partial trigonometric sums:∣∣∣∣∑
a∈A

∑
b∈B

cos
(2πab

n

)∣∣∣∣ ≤√n|A||B|,∣∣∣∣∑
a∈A

∑
b∈B

sin
(2πab

n

)∣∣∣∣ ≤√n|A||B|.
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These seemingly elementary inequalities are remarkably non-trivial when taken out
of the context we have just described.

1.2. The Fourier matrix. The Fourier matrix of order n is the symmetric matrix

Fn =
(
ζrsn
)

0≤r,s≤n−1
.

For instance

F4 =


1 1 1 1
1 ζ4 ζ2

4 ζ3
4

1 ζ2
4 ζ4

4 ζ6
4

1 ζ3
4 ζ6

4 ζ9
4

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

Using (1), it is easy to see that

FnF
∗
n = F ∗nFn = nIn.(5)

On the one hand, (5) says that the normalized Fourier matrix Fn/
√
n is unitary.

On the other hand, (5) implies that the eigenvalues of Fn have absolute value
√
n.

Going beyond this quick fact, we aim to find the eigenvalues of Fn together with
their multiplicities.

Theorem 1.4. The eigenvalues of Fn, and their multiplicities, are as follows:

eigenvalue
√
n −

√
n i

√
n −i

√
n

multiplicity b(n+ 4)/4c b(n+ 2)/4c b(n+ 1)/4c b(n− 1)/4c

It turns out that the multiplicity of each eigenvalue is roughly n/4.
Herein, we prove Theorem 1.4 in the case when n is odd. This case suffices for

our purposes. The reader is invited to prove Theorem 1.4 in the case when n is
even, by adapting the arguments given below.

We start with two preliminary facts about the trace and the determinant of Fn.

Lemma 1.5. Let n be odd. Then |Tr(Fn)| =
√
n.

Proof. We have

Tr(Fn) =

n−1∑
r=0

ζr
2

n

and so

|Tr(Fn)|2 = Tr(Fn) · Tr(Fn) =

n−1∑
r=0

n−1∑
s=0

ζr
2−s2
n .

Wemake the change of variable s := s−r, understood modulo n, in the inner sum;
then we interchange the order of summation:

|Tr(Fn)|2 =

n−1∑
s=0

ζ−s
2

n

n−1∑
r=0

ζ2sr
n .
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By (1), the inner sum vanishes except when n divides 2s, in which case it equals n.
Asn is odd, n divides 2s preciselywhenn divides s; in the range s ∈ {0, . . . , n−1},
this happens for s = 0 only. We conclude that |Tr(Fn)|2 = n. �

Lemma 1.6. Let n be odd. Then det(Fn) is a positive multiple of (−i)(n−1)/2.

Proof. Since Fn is a Vandermonde matrix, we have

det(Fn) =
∏
r<s

(ζsn − ζrn)

where, we recall, r and s take values in {0, . . . , n − 1}. We rewrite each factor of
the product as follows:

ζsn − ζrn = ζr+s2n

(
ζs−r2n − ζ

−(s−r)
2n

)
= ζr+s2n · 2i sin

(s− r)π
n

.

Note that (s− r)π/n ∈ (0, π), since 0 ≤ r < s ≤ n− 1, and so the sine factor on
the right-hand side is positive. Thus, for some C > 0 we have

det(Fn) = C
∏
r<s

i ζr+s2n = Cin(n−1)/2
∏
r<s

ζr+s2n .

As n is odd, we have in(n−1)/2 = (−i)(n−1)/2. Also, the latter product in the
formula displayed above equals 1; indeed, the exponent of ζ2n is∑

r<s

(r + s) =
1

2

(∑
r,s

(r + s)−
∑
r=s

(r + s)
)

=
2n− 2

2

(∑
r

r
)

= 2n
(n− 1

2

)2
,

which is a multiple of 2n. �

Proof of Theorem 1.4 when n is odd. As already pointed out, the eigenvalues ofFn
have modulus

√
n. Our aim is to determine the multiplicities of the possible eigen-

values ±
√
n, ±i

√
n. We denote them as follows:

• m+ andm− are the multiplicities of
√
n respectively −

√
n;

• m′+ andm′− are the multiplicities of i
√
n respectively −i

√
n.

The spectral picture of Fn simplifies upon squaring: F 2
n can only have eigenvalues

n and −n, while F 4
n can only have one eigenvalue, n.

Indeed, the matrix F 2
n turns out to be far simpler than Fn. Its (r, s) entry is

n−1∑
k=0

ζrkn · ζksn =
n−1∑
k=0

ζ(r+s)k
n =

{
n if n | r + s

0 otherwise
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by (1). For r, s ∈ {0, . . . , n− 1}, we have that r + s is a multiple of n if and only
if r = s = 0, or r + s = n. Thus F 2

n = nC where C is the n-by-n matrix

C =


1 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0

. . .
0 1 . . . 0 0

 .

Taking a further step, we notice that C2 = In. The eigenvalues of C can now be
easily determined. They are ±1, and they sum up to Tr(C) = 1; the latter formula
owes to n being odd. It follows that the eigenvalues of C are 1 with multiplicity
1
2(n+ 1), respectively −1 with multiplicity 1

2(n− 1).
There are two direct consequences concerning Fn. The first one, not needed in

what follows but too pretty to go unnoticed, is that F 4
n = n2In; in other words, the

normalized Fourier matrix Fn/
√
n has order 4. The second consequence addresses

our main interest, the eigenvalue multiplicities for Fn. As F 2
n has eigenvalues n,

with multiplicity 1
2(n+ 1), and −n, with multiplicity 1

2(n− 1), we deduce that

m+ +m− = 1
2(n+ 1), m′+ +m′− = 1

2(n− 1).(6)

Additional spectral information can be found in the trace and the determinant of
Fn. It is at this point that we bring in the preliminary lemmas.

As

Tr(Fn) = m+

√
n+m−(−

√
n) +m′+i

√
n+m′−(−i

√
n)

=
(
(m+ −m−) + (m′+ −m′−)i

)√
n,

knowing that |Tr(Fn)| =
√
n forces one of the following to hold:{

m+ −m− = ±1

m′+ −m′− = 0
or

{
m+ −m− = 0

m′+ −m′− = ±1
.(7)

On the other hand, we have

det(Fn) = (
√
n)m+ · (−

√
n)m− · (i

√
n)m

′
+ · (−i

√
n)m

′
−

= (−1)m−−m
′
+ · (−i)(n−1)/2 ·

√
n
n

sincem′+ +m′− = 1
2(n− 1). For det(Fn) to be a positive multiple of (−i)(n−1)/2,

we must have

m− ≡ m′+ mod 2.(8)

The combination of (6), (7), (8) allows us to deduce the eigenvalue multiplicities.
If n ≡ 1 mod 4, say n = 4u+ 1, thenm′+ = m′− = m− = u andm+ = u+ 1. If
n ≡ 3 mod 4, say n = 4v + 3, then m+ = m− = m′+ = v + 1 and m′− = v. In
either case,

m′+ = m− = b(n+ 1)/4c, m′− = bn/4c, m+ = bn/4c+ 1.

This completes the proof. �
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Notes. The discrete Fourier transform maps a vector a = (a0, . . . , an−1) ∈ Cn to
the vector â = (â0, . . . , ân−1) ∈ Cn, where

âk =
n−1∑
j=0

ajζ
jk
n .

The discrete Fourier transform is an invertible linear map, whose matrix representa-
tion in the standard basis of Cn is the Fourier matrix Fn. In this context, formula (2)
says that ‖â‖2 =

√
n ‖a‖2.

1.3. Quadratic Gauss sums. The quadratic Gauss sum of order n is the sum

Γn =
n−1∑
k=0

ζk
2

n .

With the Fourier matrix in mind, we recognize that Γn = Tr(Fn). Since we know
the complete spectrum of Fn, thanks to Theorem 1.4, the following explicit com-
putation is immediate.

Theorem 1.7. Let n be odd. Then

Γn =

{√
n if n ≡ 1 mod 4,

i
√
n if n ≡ 3 mod 4.

Once again, herein we are only interested in the case when n is odd. For the
record, however, let us spell out the explicit evaluation of the quadratic Gauss sum
of even order:

Γn =

{
0 if n ≡ 2 mod 4,

(1 + i)
√
n if n ≡ 0 mod 4.

Particularly interesting is the case when the order is prime. In Lemma 1.9 below,
we give an alternate formula for a quadratic Gauss sum of prime order as a signed
summation involving all the roots of unity, the signing being given by the Legendre
symbol.

Let p be an odd prime. The Legendre symbol records the quadratic naturemodulo
p of a given integer, as follows. When a is a multiple of p, we set (a/p) = 0. For a
relatively prime to p, we set

(a/p) =

{
1 if a is a quadratic residue mod p,
−1 if a is a quadratic non-residue mod p.

Here, an integer a relatively prime to p is said to be a quadratic residue mod p if the
equation x2 ≡ a mod p is solvable; otherwise, a is a quadratic non-residue. Elab-
orating further, we note the following: for each integer a, the number of solutions
x ∈ {0, 1, . . . , p− 1} to the equation x2 ≡ a mod p is 1 + (a/p).

We recall a few fundamental facts about the Legendre symbol. Firstly, it is peri-
odic: if a ≡ b mod p, then (a/p) = (b/p). The upshot is that we can restrict to the
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modular interval {0, 1, . . . , p − 1} ⊆ Z, or we can induce a map on the quotient
Z/pZ, whenever convenient.

Secondly, the Legendre symbol is multiplicative: for any two integers a and b,
we have

(a/p)(b/p) = (ab/p).

One way to to obtain this is by means of the Euler formula a(p−1)/2 ≡ (a/p) mod
p. This formula also gives the useful fact that

(−1/p) =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

Thirdly, the Legendre symbol is balanced: there are as many quadratic residues
mod p as quadratic non-residues mod p in {1, . . . , p − 1}; namely, (p − 1)/2 of
each kind. This can be stated as follows.

Lemma 1.8. We have
p−1∑
k=0

(k/p) = 0.

Proof. Consider the squaring map s : {0, 1, . . . , p−1} → {0, 1, . . . , p−1}, given
by s(x) = x2 mod p. For each k = 0, . . . , p−1, the preimage s−1(k) has 1+(k/p)
elements. Therefore

p =

p−1∑
k=0

|s−1(k)| =
p−1∑
k=0

(
1 + (k/p)

)
= p+

p−1∑
k=0

(k/p),

and the claimed identity follows. �

After this brief interlude on the Legendre symbol, let us return to quadratic Gauss
sums.

Lemma 1.9. Let p be an odd prime. Then

Γp =

p−1∑
k=0

(k/p) ζ
k
p .

Proof. We continue using the squaring map introduced in the proof of the previous
lemma. We have

Γp =

p−1∑
j=0

ζj
2

p =

p−1∑
j=0

ζs(j)p =

p−1∑
k=0

|s−1(k)| ζkp

=

p−1∑
k=0

(
1 + (k/p)

)
ζkp =

p−1∑
k=0

(k/p) ζ
k
p

since
∑p−1

k=0 ζ
k
p = 0. �

The above lemma is a very useful observation. It is the starting point for defining
general Gauss sums, which we will treat in some detail later on.
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Notes. Quadratic Gauss sums were first introduced end evaluated by Gauss. It
is very easy to compute the absolute size of a quadratic Gauss sum; this is what
Lemma 1.5 does. But the matter of actually evaluating the quadratic Gauss sums is
decidedly non-trivial. It took Gauss four years to settle this evaluation. In August
1805, he wrote the following in his mathematical diary:

Demonstratio theorematis venustissimi supra 1801 Mai commem-
orati, quam per 4 annos et ultra omni contentione quaesiveramus,
tandem perfecimus. (The proof of themost beautiful theoremmen-
tioned above, May 1801, which we had been seeking for 4 years and
more with all efforts, we have at last completed.)

Gauss’s original approach to the evaluation of quadratic Gauss sums used what
are now called Gaussian, or q-binomial coefficients. For an in-depth analysis of this
particular spot in the wide-ranging work of Gauss, we refer to the superb account
of Patterson [15].

The elegant approach via the Fourier matrix, adopted herein, is due to Schur
[18]. The Fourier matrix is a distinguished matrix, underlying the discrete Fourier
transform, so Theorem 1.7 is of independent interest.

1.4. Quadratic reciprocity. The law of quadratic reciprocity exhibits a correla-
tion between the Legendre symbols for two distinct primes. This is unexpected,
because we usually think of distinct primes as being arithmetically independent.

Theorem 1.10. Let p and q be distinct odd primes. Then
(q/p) = εpq (p/q)

where

εpq = (−1)(p−1)(q−1)/4 =

{
1 if p ≡ 1 mod 4 or q ≡ 1 mod 4,

−1 if p ≡ 3 mod 4 and q ≡ 3 mod 4.

We will obtain the law of quadratic reciprocity from the following product rela-
tion for quadratic Gauss sums.

Lemma 1.11. Let p and q be distinct odd primes. Then

Γpq = (q/p) (p/q) Γp Γq.

Proof. We have

Γp =

p−1∑
k=0

(k/p) ζ
k
p =

p−1∑
k=0

(qk/p) ζ
qk
p

since k 7→ qk mod p permutes {0, 1, . . . , p− 1}. Thanks to the multiplicativity of
the Legendre symbol, we deduce that

(q/p) Γp =

p−1∑
k=0

(k/p) ζ
qk
p .
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Note, at this point, that the argument of Lemma 1.9 is valid for any p-th root of
unity, so we may use ζqp in place of ζp to deduce that

(q/p) Γp =

p−1∑
k=0

(ζqp)k
2

=

p−1∑
k=0

ζ(qk)2

pq .

There is, of course, a similar formula for (p/q) Γq. Multiplying the two formulas
we get

(q/p) (p/q) Γp Γq =

( p−1∑
k=0

ζ(qk)2

pq

)( q−1∑
j=0

ζ(pj)2

pq

)

=

p−1∑
k=0

q−1∑
j=0

ζ(qk)2+(pj)2

pq =

p−1∑
k=0

q−1∑
j=0

ζ(qk+pj)2

pq .

But {qk + pj : k = 0, . . . , p− 1; j = 0, . . . , q − 1} = {0, 1, . . . , pq − 1}, so the
latter sum is precisely Γpq. �

Proof of Theorem 1.10. The previous lemma gives

(q/p) (p/q) =
Γpq

Γp Γq
.

Thanks to Theorem 1.7, we can compute the right-hand ratio: if p, q ≡ 1 mod 4, it
equals 1; if p, q ≡ 3 mod 4, it equals −1; if p ≡ 1 mod 4 and q ≡ 3 mod 4, or vice
versa, then it equals 1. In summary, the right-hand ratio is precisely the signing εpq
described in the statement. The claimed formula follows by rearranging. �

Notes. Although quadratic Gauss sums first arose in a different context, Gauss soon
saw how to use them in order to prove the quadratic reciprocity law. This is neither
the first nor the last proof of the quadratic reciprocity law that Gauss found. Gauss’s
quest for several different proofs attest to his fascination with this somewhat mys-
terious law.

After Gauss, many other proofs of the quadratic reciprocity law have been found.
This is, then, a proper ground for testing a philosophical question: what is a good
proof? For a nice discussion of depth versus transparency in various approaches to
the quadratic reciprocity law, see D’Alessandro [4].

1.5. Some trigonometric identities. We now turn to illustrating the use of qua-
dratic Gauss sums in the quaint art of trigonometry. Indeed, a quadratic Gauss sum
is, in essence, a trigonometric-type sum:

Γn =
n−1∑
k=0

ζk
2

n = 1 +
n−1∑
k=1

cos

(
2πk2

n

)
+ i

n−1∑
k=1

sin

(
2πk2

n

)
The evaluation of quadratic Gauss sums, given in Theorem 1.7, can therefore be
stated in purely trigonometric terms.
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Theorem 1.12. Let n be odd. Then
n−1∑
k=1

cos

(
2πk2

n

)
=

{√
n− 1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4
(9)

and
n−1∑
k=1

sin

(
2πk2

n

)
=

{
0 if n ≡ 1 mod 4,
√
n if n ≡ 3 mod 4

(10)

We continue focusing on the case when n is odd, but we remind the reader that
related formulas can also be written down when n is even.

Out of the above formulas (9) and (10) flow a number of concrete trigonometric
identities. They typically arise for small values of n, and that makes them decidedly
deceptive–they look elementary enough, yet they are quite non-trivial without the
background offered by quadratic Gauss sums.

Example 1.13. We have

cos

(
2π

17

)
+ cos

(
4π

17

)
+ cos

(
8π

17

)
+ cos

(
16π

17

)
=

√
17− 1

4
.

This follows by using (9) for n = 17. The squares modulo 17 are ±1,±2,±4,±8.
So each term cos(2kπ/17), where k = 1, 2, 4, 8, appears four times on the left-hand
side of (9).

Example 1.14. We show that

tan

(
3π

11

)
+ 4 sin

(
2π

11

)
=
√

11.

We aim to exploit (10) for n = 11. Put θ = π/11. The squares modulo 11 are
1,−2, 3, 4, 5, so we have

sin(2θ)− sin(4θ) + sin(6θ) + sin(8θ) + sin(10θ) =

√
11

2
.

We pack all the arguments into [0, π/2] by using the symmetry sin(π−x) = sinx:

sin(θ) + sin(2θ) + sin(3θ)− sin(4θ) + sin(5θ) =

√
11

2
.

We now posit an identity of the form

tan(3θ) = 2

5∑
k=1

ck sin(kθ).

Multiplying through by cos(3θ), and using the formula 2 cosx sin y = sin(y−x)+
sin(y + x), we turn the above identity into

sin(3θ) =
5∑

k=1

ck sin
(
(k − 3)θ

)
+

5∑
k=1

ck sin
(
(k + 3)θ

)
.
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The right-hand side can be put in the form
a1 sin(θ) + a2 sin(2θ) + a3 sin(3θ) + a4 sin(4θ) + a5 sin(5θ)

by using the formulas sin(π− x) = sinx and sin(−x) = − sinx. The coefficients
are easily found: a1 = c4 − c2, a2 = c5 − c1, a3 = c5, a4 = c1 + c4, and
a5 = c2 + c3. So we do have an identity if we impose a1 = a2 = a4 = a5 = 0
and a3 = 1. This leads us to the alternating coefficients c1 = c3 = c5 = 1 and
c2 = c4 = −1.

We thus find that
1

2
tan(3θ) = sin(θ)− sin(2θ) + sin(3θ)− sin(4θ) + sin(5θ)

=

√
11

2
− 2 sin(2θ).

The claimed formula follows by rearranging.

Notes. The evaluation of

cos

(
2π

13

)
+ cos

(
6π

13

)
+ cos

(
8π

13

)
is the starting point for Sury’s nice piece [19]. By an argument just like the one
given in Example 1.13, the answer turns out to be (

√
13 − 1)/2. Sury goes on to

discuss quadratic Gauss sums and their evaluation. He follows the same approach
as the one presented herein–namely, Schur’s argument using the Fourier matrix.

For a more elaborate discussion of Example 1.14, and kindred identities, see
Moll [12].

1.6. The Jacobsthal matrix. The Jacobsthal matrix of order p is the matrix
Qp =

(
(a− b/p)

)
0≤a,b≤p−1

.

ThusQp has 1 or−1 as off-diagonal entries, respectively 0 along the diagonal. For
example:

Q5 =


0 1 −1 −1 1
1 0 1 −1 −1
−1 1 0 1 −1
−1 −1 1 0 1
1 −1 −1 1 0

 ,

and

Q7 =



0 −1 −1 1 −1 1 1
1 0 −1 −1 1 −1 1
1 1 0 −1 −1 1 −1
−1 1 1 0 −1 −1 1
1 −1 1 1 0 −1 −1
−1 1 −1 1 1 0 −1
−1 −1 1 −1 1 1 0


.

We observe the following properties of the Jacobsthal matrix:
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• Qp is circulant: a cyclic shift of a row (or column) yields the next row
(respectively, the next column);
• each row and each column of Qp sums up to 0;
• Qp is symmetric for p ≡ 1 mod 4, respectively antisymmetric for p ≡ 3
mod 4.

Another key property of the Jacobsthal matrix is that

Q2
p = (−1/p) (pIp − Jp)

where Ip is the identity matrix of order p, and Jp is the all-1 matrix of order p.
This is a direct consequence of the following convolution-type computation for the
Legendre symbol.

Lemma 1.15. Let a and b be integers. Then
p−1∑
c=0

(a− c/p) (c− b/p) =

{
−(−1/p) if a 6≡ b mod p,
(−1/p) (p− 1) if a ≡ b mod p.

Proof. We write
p−1∑
c=0

(a− c/p) (c− b/p) = (−1/p)

p−1∑
c=0

(c− a/p) (c− b/p)

= (−1/p)

p−1∑
c=0

(
c(c+ a− b)/p

)
by using the multiplicativity of the Legendre symbol, followed by the reindexing
c := c+ a. It therefore suffices to prove that, whenever d is an integer, we have

p−1∑
k=0

(
k(k + d)/p

)
=

{
−1 if d 6≡ 0 mod p,
p− 1 if d ≡ 0 mod p.

The case d ≡ 0 mod p is obvious, as (k2/p) = 1 for all k = 1, . . . , p− 1. Assume
d 6≡ 0mod p in what follows. Note that we can still drop the index value k = 0 from
the sum. For each k ∈ {1 . . . , p− 1} there exists a unique k′ ∈ {1 . . . , p− 1} such
that kk′ ≡ 1 mod p; thus k′ is the modular inverse of k. As (kk′/p) = (1/p) = 1,
we have (k/p) = (k′/p). We deduce that

p−1∑
k=0

(
k(k + d)/p

)
=

p−1∑
k=1

(
k′(k + d)/p

)
.

Consider the map f : {1, . . . , p−1} → {0, 1, . . . , p−1} given by k 7→ k′(k+d)
mod p. The key point is that f is one-to-one. Indeed, assume k1, k2 ∈ {1, . . . , p−1}
satisfy k′1(k1 + d) ≡ k′2(k2 + d) mod p. Then k2(k1 + d) ≡ k1(k2 + d) mod p
and so k2d ≡ k1d mod p. As d is relatively prime to p, it follows that k2 and k1 are
congruent modulo p, whence equal.

We infer that the map f misses exactly one value in its codomain {0, 1, . . . , p−
1}. It is not hard to guess that the unattained value is 1; for k′(k + d) ≡ 1 mod p
would imply k + d ≡ k mod p, whence d ≡ 0 mod p–a contradiction.



GAUSS SUMS 13

In light of Lemma 1.8, we deduce that
p−1∑
k=1

(
k′(k + d)/p

)
= −(−1/p) = −1,

which completes the argument. �

Next, we turn to the diagonalization of the Jacobsthal matrix. It is in this direction
that we run into quadratic Gauss sums.

As a general fact, all circulant matrices of order n are diagonalized (over C) by
one and the same matrix–the Fourier matrix Fn. Recall, this is the invertible n×n
matrix Fn = (ζabn )0≤a,b≤n−1. It is not hard to see that, conversely, a matrix which
is diagonalized by the Fourier matrix Fn is a circulant matrix.

Lemma 1.16. Let

W =


w0 wn−1 . . . w1

w1 w0 . . . w2

. . .
wn−1 wn−2 . . . w0


be a circulant matrix of order n, with complex entries. ThenW is diagonalized by
the Fourier matrix Fn; specifically, F−1

n WFn is the diagonal matrix

diag

( n−1∑
k=0

wk ζ
−kb
n : b = 0, . . . , n− 1

)
.

Proof. Let D denote the diagonal matrix described above. We aim to check that
WFn = FnD. We view the entries of the circulant matrixW as being given by the
formulaWab = wa−b for 0 ≤ a, b ≤ n− 1, where the index is interpreted modulo
n. Then

(WFn)ab =

n−1∑
c=0

Wac (Fn)cb =
n−1∑
c=0

wa−c ζ
cb
n = ζabn

n−1∑
c=0

wa−c ζ
−(a−c)b
n

= ζabn

n−1∑
k=0

wk ζ
−kb
n = (Fn)ab Dbb = (FnD)ab.

We have thereby verifiedWFn = FnD entry by entry. �

Returning to the diagonalization of the Jacobsthal matrix, we obtain the follow-
ing.

Theorem 1.17. The Jacobsthal matrixQp is diagonalized by the Fourier matrix
Fp; specifically,

F−1
p QpFp =

{
diag

(
(b/p)

√
p : b = 0, . . . , p− 1

)
if p ≡ 1 mod 4,

diag
(
− i(b/p)

√
p : b = 0, . . . , p− 1

)
if p ≡ 3 mod 4.
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Proof. By the previous lemma, F−1
p QpFp is the diagonal matrix whose entries are

p−1∑
k=0

(k/p) ζ
−kb
p

for b = 0, . . . , p − 1. As we have already seen in the proof of Lemma 1.11, the
above sum equals (−b/p) Γp whenever b 6= 0. This continues to hold for b = 0,
since both sides vanish in this case. Thus

F−1
p QpFp = diag

(
(−b/p) Γp : b = 0, . . . , p− 1

)
.

This can be made very explicit, by using the evaluation of the quadratic Gauss
sum Γp. If p ≡ 1 mod 4, we have Γp =

√
p; furthermore, (−1/p) = 1. In this case

we obtain F−1
p QpFp = diag

(
(b/p)

√
p : b = 0, . . . , p − 1

)
. If p ≡ 3 mod 4, we

have Γp = i
√
p and (−1/p) = −1. We then have F−1

p QpFp = diag
(
− i(b/p)

√
p :

b = 0, . . . , p− 1
)
. �

The eigenvalues of the Jacobsthal matrix Qp are listed along the diagonals, as if
on a clothesline, ready to be read off:

• when p ≡ 1 mod 4, the eigenvalues of Qp are 0, with multiplicity one, and
±√p, each with multiplicity (p− 1)/2;
• when p ≡ 3 mod 4, the eigenvalues of Qp are 0, with multiplicity one, and
±i√p, each with multiplicity (p− 1)/2.

If the eigenvalues of Qp is all that we are after, there is a quicker way to get
them. Indeed, they can be gleaned from the relation Q2

p = (−1/p) (pIp − Jp). The
matrix Jp has two eigenvalues, 0 and p, the latter being simple; therefore the matrix
pIp−Jp has eigenvalues p and 0, the latter being simple. We infer thatQp has 0 as
a simple eigenvalue, and the remaining p − 1 eigenvalues satisfy λ2 = (−1/p) p.
When p ≡ 1 mod 4, we have (−1/p) = 1 and so λ = ±√p. When p ≡ 3 mod
4, we have (−1/p) = −1 and so λ = ±i√p. Since the eigenvalues sum up to the
trace of Qp, which is 0, we deduce that, in each case, the two possible signs occur
equally often.

Application 1.18. A Hadamard matrix of order n is an n-by-n matrix whose en-
tries are 1 or −1, and whose rows are mutually orthogonal. For example,(

1 1
1 −1

)
is a Hadamard matrix of order 2. When n ≥ 3, a simple combinatorial argument
shows that a necessary condition for the existence of a Hadamard matrix of order n
is that n ≡ 0 mod 4. A long-standing open question asks the converse: does there
exist a Hadamard matrix of order n, for every n ≡ 0 mod 4?

Here are two constructions of Hadamard matrices that have the Jacobsthal matrix
at their core:
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if p is a prime and p ≡ 3 mod 4, then
1 1 . . . 1
1
... Qp − Ip
1


is a Hadamard matrix of order p+ 1;

if p is a prime and p ≡ 1 mod 4, set

M± =


±1 1 . . . 1
1
... Qp ± Ip
1

 ;

then (
M+ M−
M− −M+

)
is a Hadamard matrix of order 2(p+ 1).

We leave it as an exercise for the reader to check that the matrices are indeed
Hadamard, as claimed. Suffices to say that the argument exploits the properties
of Qp that we have already listed. Firstly, Qp ± Ip has all its entries 1 or −1.
Secondly, Qp is symmetric and Q2

p = pIp − Jp when p ≡ 1 mod 4, respectively
Qp is antisymmetric and Q2

p = −(pIp − Jp) when p ≡ 3 mod 4.

Notes. The remarkable construction of Hadamard matrices, outlined above, is due
to Paley [14].

2. Gauss sums over Fp

Marco Polo describes a bridge, stone by stone. “But which is the
stone that supports the bridge?” Kublai Khan asks. “The bridge
is not supported by one stone or another,” Marco answers, “but by
the line of the arch that they form.” Kublai Khan remains silent,
reflecting. Then he adds: “Why do you speak of the stones? It is
only the arch that matters to me.” Polo answers: “Without stones
there is no arch.” (Italo Calvino, Invisible Cities)

2.1. Characters of finite abelian groups. Let G be a finite abelian group. The
operation of G is written multiplicatively, and its identity element is denoted by 1.
The cardinality of G is denoted |G|.

A character χ of G is a group homomorphism χ : G→ C∗. That is to say, χ is
a complex-valued map on G satisfying χ(gh) = χ(g)χ(h) for all g, h ∈ G. Note
that χ(1) = 1, though one should bear in mind that the two 1’s are different, in
general.

Lemma 2.1. Let χ be a character of G. Then
(i) |χ(g)| = 1 for all g ∈ G;
(ii) χ(g−1) = χ(g) for all g ∈ G.

Proof. (i) Put n = |G|. Then each g ∈ G satisfies gn = 1 and so χ(g)n = χ(gn) =
χ(1) = 1 in C∗, whence |χ(g)| = 1. In fact, not only does χ take values in the unit
circle, its values are actually among the n-th roots of unity. Next,

χ(g−1) =
1

χ(g)
= χ(g)
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which proves (ii). �

Let Ĝ denote the set of characters of G. Then Ĝ is a group under pointwise
multiplication, the neutral element being the trivial character 1 given by 1(g) = 1

for all g ∈ G. The inverse, in Ĝ, of a character χ is χ−1 = χ. The finite abelian
group Ĝ is called the dual of G.

Here is a key example.

Example 2.2. Consider the additive group Z/nZ. A character χ is determined by
the value χ(1), where 1 ∈ Z/nZ is the canonical generator. As χ(1) is an n-th
root of unity in C, we have χ(1) = ζkn for a unique k ∈ {0, . . . , n − 1}. The
corresponding character is given by

χk(a) = ζakn .

So the dual group of Z/nZ is Ẑ/nZ = {χk : k = 0, . . . , n − 1}. This is a cyclic
group with n elements, generated by the character χ1. The map k 7→ χk defines a
group isomorphism Z/nZ −→ Ẑ/nZ.

A key upshot of the above example is that Ĝ is isomorphic toG, wheneverG is a
finite cyclic group. Now every finite abelian group is isomorphic to a direct product
of finite cyclic groups, and taking duals is compatible with direct products–in the
sense that Ĝ1 ×G2 is naturally isomorphic to Ĝ1 × Ĝ2 for any two finite abelian
groups G1 and G2. The verification of this latter fact is left to the reader. We thus
reach the following conclusion.

Theorem 2.3. LetG be a finite abelian group. Then the dual Ĝ is isomorphic to
G. In particular, G has exactly |G| characters.

The previous theorem is one of the core facts in the character theory for finite
abelian groups. The next two are concerned with certain fundamental character
sums, and they are sometimes referred to as the orthogonality relations. It will be
convenient to start using the Iverson bracket notation: if P is a statement, then

JP K =

{
1 if P is true,
0 if P is false.

Theorem 2.4. For each character χ of G we have∑
g∈G

χ(g) = |G|Jχ = 1K =

{
0 if χ 6= 1,

|G| if χ = 1.

Proof. When χ = 1, we clearly have
∑

g∈G χ(g) = 1. The interesting part is
proving that

∑
g∈G χ(g) = 0 whenever χ 6= 1. Indeed, for each h ∈ G we have

χ(h)
∑
g∈G

χ(g) =
∑
g∈G

χ(hg) =
∑
g∈G

χ(g).
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As χ is non-trivial, there exists h ∈ G with χ(h) 6= 1. The desired vanishing
follows. �

Theorem 2.5. For each element g ∈ G we have∑
χ∈Ĝ

χ(g) = |G|Jg = 1K =

{
0 if g 6= 1,

|G| if g = 1.

Proof. We calculate∑
g∈G

∣∣∣∑
χ∈Ĝ

χ(g)
∣∣∣2 =

∑
g∈G

( ∑
χ1∈Ĝ

χ1(g)
)( ∑

χ2∈Ĝ

χ2(g)
)

=
∑

χ1,χ2∈Ĝ

∑
g∈G

(χ1χ2)(g).

By the previous theorem, the inner sum equals |G|Jχ1χ2 = 1K = |G|Jχ1 = χ2K
and so we can continue as follows:∑

g∈G

∣∣∣∑
χ∈Ĝ

χ(g)
∣∣∣2 = |G|

∑
χ1,χ2∈Ĝ

Jχ1 = χ2K = |G||Ĝ| = |G|2.

The term corresponding to g = 1 is
∑

χ∈Ĝ χ(1) = |Ĝ| = |G|. We deduce from
the above formula that

∑
χ∈Ĝ χ(g) = 0 whenever g 6= 1. �

We note that, over the group Z/nZ, the previous theorem yields (1).
The finite-dimensional space of complex-valued functions onG can be endowed

with the natural scalar product

〈α, β〉 =
∑
g∈G

α(g) β(g).

Viewed in this light, Theorem 2.4 implies that 〈χ,1〉 = 0 for each non-trivial char-
acter χ–that is to say, χ is orthogonal to the trivial character 1. Actually, more is
true: distinct characters are orthogonal. We have brushed past this fact in the proof
of Theorem 2.5. If χ1 6= χ2 then

〈χ1, χ2〉 =
∑
g∈G

χ1(g) χ2(g) =
∑
g∈G

(χ1χ2)(g) = 0

since the character χ1χ2 is non-trivial.
There are |G| characters ofG, as many as the dimension of the space of complex-

valued functions on G, and they form an orthogonal set. So the following holds.

Theorem 2.6. The characters of G form an orthogonal basis for the space of
complex-valued functions on G.
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2.2. Incomplete character sum estimates: the square-root bound. Let G be a
finite abelian group. A sum of the form∑

g∈A
χ(g),

where χ is a character of G, and A is a subset of G, is known as an incomplete
character sum. In applications, such a sum counts an arithmetic occurrence (en-
coded by χ) within a restricted range (the subset A). The explicit evaluation of an
incomplete character sum is an exceptionally rare event. Instead, one usually aims
for estimates on its magnitude.

The trivial bound, which follows from the fact that |χ(g)| = 1 for each g ∈ G, is∣∣∣∑
g∈A

χ(g)
∣∣∣ ≤ |A|.

This uniform bound is attained by the trivial character χ = 1, so let us focus on
non-trivial characters. We will show that the square-root bound∣∣∣∑

g∈A
χ(g)

∣∣∣ ≤√|A|
holds on average. This can actually be interpreted in two different ways–that we
vary χ while keeping A fixed, or that we vary A, subject to a fixed size, while
keeping χ fixed. It is a comforting fact that both ways lead to the same outcome.

Theorem 2.7. Let A ⊆ G be non-empty, and let χ be a non-trivial character of
G. Then

E
∣∣∣∑
g∈A

χ(g)
∣∣∣ ≤√|A|

in two ways:
• for each A, as χ runs over the non-trivial characters of G;
• for each χ, as A runs over the subsets of G of a given size.

We recall that the expected value of a random variable f : Ω→ R, defined over
a finite sample space Ω, is

Ef =
1

|Ω|
∑
ω∈Ω

f(ω).

In general, we have (E|f |)2 ≤ E(|f |2) by a simple application of the Cauchy-
Schwarz inequality. The expected value of |f |2 turns out to be easier to compute in
a number of situations that exhibit ‘orthogonality’, such as the character context we
are in.

Lemma 2.8. Let A ⊆ G be non-empty, and let χ be a non-trivial character of G.
Then

E
∣∣∣∑
g∈A

χ(g)
∣∣∣2 =

|A||Ac|
|G| − 1

in two ways:
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• for each A, as χ runs over the non-trivial characters of G;
• for each χ, as A runs over the subsets of G of a given size.

We remark that the symmetry A ↔ Ac in the above outcome should not be a
surprise. For if χ is a non-trivial character, then

∑
g∈Ac χ(g) = −

∑
g∈A χ(g) and

so
∣∣∑

g∈Ac χ(g)
∣∣ =

∣∣∑
g∈A χ(g)

∣∣.
Theorem 2.7 is an immediate consequence of the lemma.

Proof. To begin with, we write∣∣∣∑
g∈A

χ(g)
∣∣∣2 =

(∑
g∈A

χ(g)
)(∑

h∈A
χ(h)

)
=
∑
g,h∈A

χ(gh−1).

Let A ⊆ G be fixed non-empty subset. As χ runs over the non-trivial characters of
G, we have

E
∣∣∣∑
g∈A

χ(g)
∣∣∣2 =

1

|G| − 1

∑
χ 6=1

∣∣∣∑
g∈A

χ(g)
∣∣∣2

=
1

|G| − 1

∑
g,h∈A

∑
χ 6=1

χ(gh−1).

By Theorem 2.5, the inner sum is |G|Jgh−1 = 1K− 1 = |G|Jg = hK− 1. Hence

E
∣∣∣∑
g∈A

χ(g)
∣∣∣2 =

1

|G| − 1

∑
g,h∈A

(
|G|Jg = hK− 1

)
=
|G||A| − |A|2

|G| − 1
=
|A||Ac|
|G| − 1

.

Now let χ be a fixed non-trivial character of G. As A runs over the subsets of G
of given size α, we have

E
∣∣∣∑
g∈A

χ(g)
∣∣∣2 =

(
|G|
α

)−1 ∑
|A|=α

∣∣∣∑
g∈A

χ(g)
∣∣∣2

=

(
|G|
α

)−1 ∑
|A|=α

∑
g,h∈A

χ(gh−1).

The double sum can be written as∑
g,h∈G

χ(gh−1) ·
∣∣{A ⊆ G : g, h ∈ A, |A| = α}

∣∣
and the latter count is

(|G|−1
α−1

)
when g = h, respectively

(|G|−2
α−2

)
when g 6= h. So

the above double sum evaluates as(
|G| − 1

α− 1

)∑
g∈G

χ(1) +

(
|G| − 2

α− 2

)∑
g 6=h

χ(gh−1).
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Here
∑

g∈G χ(1) = |G|, and∑
g 6=h

χ(gh−1) =
∑
g=h

χ(gh−1)−
∑
g,h∈G

χ(gh−1)

=
∑
g∈G

χ(1)−
∣∣∣∑
g∈G

χ(g)
∣∣∣2 = |G|

as well. We conclude that

E
∣∣∣∑
g∈A

χ(g)
∣∣∣2 =

(
|G|
α

)−1

|G|
(
|G| − 2

α− 1

)
=
α(|G| − α)

|G| − 1

as claimed. �

2.3. Multiplicative characters of Fp. Let Fp = Z/pZ be the finite field with p
elements, where p is an odd prime. Two abelian group structures coexist on Fp:
the additive group (Fp,+), and the multiplicative group (F∗p, ·); both are cyclic.
A significant difference arises, however, when it comes to the cyclic generators.
There is an explicit and canonical additive generator, namely 1, but a multiplicative
generator is quite mysterious in general–neither explicit, nor canonical. In fact,
finding one is a challenging problem from the computational viewpoint–no efficient
algorithm is known for doing so.

Two types of characters can be associated to Fp: additive characters, which are
maps ψ : Fp → C∗ satisfying ψ(a)ψ(b) = ψ(a + b), respectively multiplicative
characters, which are maps χ : F∗p → C∗ satisfying χ(a)χ(b) = χ(ab). The
additive characters can be described explicitly, as in Example 2.2, thanks to the
canonical additive generator 1. The lack of a canonical multiplicative generator
makes multiplicative characters more obscure. They are the main characters in what
follows.

It is convenient to extend each multiplicative character χ, from F∗p to the whole
of Fp. We do so by setting χ(0) = 0 when χ 6= 1, respectively χ(0) = 1 when
χ = 1. Thus extended, a multiplicative character χ satisfies χ(a)χ(b) = χ(ab) for
all a, b ∈ Fp, and ∑

a∈Fp

χ(a) = pJχ = 1K =

{
0 if χ 6= 1,

p if χ = 1.

Example 2.9. The Legendre symbol on Z descends to a multiplicative character
of Z/pZ = Fp, denoted by σ and referred to as the quadratic character in what
follows. Thus

σ(a) = (a/p)

for a ∈ {0, 1, . . . , p−1}. Note that the quadratic character is±1 valued on F∗p, and
already extended to Fp by σ(0) = 0. The quadratic character has order 2; in fact,
since the dual of the multiplicative group F∗p is cyclic, it is the unique multiplicative
character of order 2.
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We recall that

σ(−1) =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

Lemma 2.10. Let χ be a non-trivial multiplicative character of Fp, and let a, b ∈
Fp. Then ∑

c∈Fp

χ(c+ a) χ(c+ b) = pJa = bK− 1 =

{
−1 if a 6= b,

p− 1 if a = b.

Proof. We write ∑
c∈Fp

χ(c+ a) χ(c+ b) =
∑
c6=−b

χ
(c+ a

c+ b

)
.

When a = b, the right-hand sum equals (p − 1)χ(1) = p − 1. When a 6= b, we
observe that c 7→ (c+a)/(c+b) is a bijection from Fp\{−b} to Fp\{1}. Therefore
the right-hand sum equals −χ(1) = −1. �

For χ = σ, the quadratic character, we recover Lemma 1.15 and its proof.

2.4. Gauss sums. The Gauss sum associated to a multiplicative character χ of Fp
is

G(χ) =
∑
a∈Fp

χ(a) ζap ,

where, as usual, ζp = e2πi/p is the ‘first’ p-th root of unity.
When χ is the trivial character, we have G(1) =

∑
a∈Fp

ζap = 0.
When χ is the quadratic character σ, Lemma 1.9 can be stated as saying that

G(σ) = Γp, the quadratic Gauss sum of order p. We therefore have the following
fact.

Theorem 2.11. The Gauss sum corresponding to the quadratic character can be
evaluated as

G(σ) =

{√
p if p ≡ 1 mod 4,

i
√
p if p ≡ 3 mod 4.

As for Gauss sum associated to general non-trivial characters, we quickly aban-
don any hope of evaluating them. What we can evaluate, quite easily in fact, is their
absolute value. This will play a crucial role in what follows.

Theorem 2.12. Let χ be a non-trivial multiplicative character of Fp. Then∣∣G(χ)
∣∣ =
√
p.(11)

One way to prove Theorem 2.12 is by means of the following result of indepen-
dent interest.
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Lemma 2.13. Let χ be a non-trivial multiplicative character of Fp, and let c ∈ Fp.
Then ∑

a∈Fp

χ(a) ζacp = χ(c)G(χ).(12)

Proof. If c = 0, then both sides of (12) vanish. If c 6= 0, then the change of variable
a 7→ ac−1 yields∑

a∈Fp

χ(a) ζacp =
∑
a∈Fp

χ(ac−1) ζap = χ(c−1)
∑
a∈Fp

χ(a) ζap = χ(c)G(χ),

and so (12) is verified in this case as well. �

Proof of Theorem 2.12. By (2), we have∑
c∈Fp

∣∣∣ ∑
a∈Fp

χ(a) ζcap

∣∣∣2 = p
∑
c∈Fp

|χ(c)|2.

On the left-hand side, the inner-most sum equals χ(c)G(χ), thanks to (12). Thus,
the above identity becomes

|G(χ)|2
∑
c∈Fp

|χ(c)|2 = p
∑
c∈Fp

|χ(c)|2.

The two sums are clearly identical, and non-vanishing; in fact, their value is p− 1.
It follows that |G(χ)|2 = p, whence the formula (11). �

The first remark concerning the identity (12) is that, by applying it for c = −1,
we have

G(χ) =
∑
a∈Fp

χ(a) ζ−ap = χ(−1)G(χ).(13)

Thus (11) can also be expressed as G(χ)G(χ) = χ(−1)p.
The second remark on (12) is that it can be put in the following form:

χ(a) =
1

G(χ)

∑
c∈F∗p

χ(c) ζacp .(14)

Note that we have dropped the index value c = 0, as χ(0) = 0. The point of the
above formula is that the left-hand side behaves multiplicatively in the argument
a, whereas the right-hand side has an additive behavior. Subsequent results will
illustrate the usefulness of this trade-off.

Notes. For the sake of conciseness we have restricted our attention to Gauss sums
over Fp. One may–and should– consider Gauss sums over a finite field, or over a
modular ringZ/nZ. We refer the reader to Conrad’s blurb [2] for a nice overview of
these generalizations. The common case ofFp = Z/pZ is the simplest, yet arguably
the most important–the main features of Gauss sums shine through, unburdened by
technicalities.
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2.5. The Fourier matrix of order p, revisited. Recall that the Fourier matrix of
order p is given byFp =

(
ζrsp
)

0≤r,s≤p−1
. We can presently make a key observation:

that we can interpret (12) as saying that

Fp · χ = G(χ) χ(15)

for any non-trivial multiplicative character χ of Fp. Here, we view χ as the column
vector (0 = χ(0), 1 = χ(1), . . . , χ(p− 1)) ∈ Cp. Replacing χ by χ yields

Fp · χ = G(χ) χ.(16)

Taken together, the relations (15) and (16) suggest that two linear combination of
χ and χ are eigenvectors of Fp. This is what the first part of the next theorem
states, though casting out the quadratic character σ. In the case when χ = σ, the
relations (15) and (16) are duplicates since σ is real-valued, and we simply get that
σ is an eigenvector of Fp. The second part of the next theorem records this case.
The third part completes the picture by finding the contribution of the remaining
multiplicative character–the trivial character 1.

Theorem 2.14 (Eigenvectors of Fp).
(i) Let χ 6= 1, σ be a multiplicative character of Fp. Put

ε(χ) =

{
1 if χ(−1) = 1,

i if χ(−1) = −1

so that ε(χ)2 = χ(−1). Then v±(χ) = ±ε(χ)
√
p χ + G(χ) χ is an

eigenvector of Fp with eigenvalue ±ε(χ)
√
p.

(ii) The quadratic character σ is an eigenvector of Fp with eigenvalueG(σ).
(iii) Put 10 = (1, 0, . . . , 0) ∈ Cp. Then v±(1) = ±√p 10 + 1 is an eigen-

vector of Fp with eigenvalue ±
√
p.

Proof. (i) Let us first spell out the simple fact that χ(−1) = ±1 for each multi-
plicative character χ of Fp; this is implicit in the definition of the signing ε. The
assumption that χ 6= 1, σ guarantees that χ and χ are distinct, whence linearly in-
dependent. Therefore the vectors v+(χ) and v−(χ) are non-zero, in fact linearly
independent as well.

Using (15) and (16), we compute

Fp · v+(χ) = ε(χ)
√
p(Fp · χ) +G(χ)(Fp · χ)

= ε(χ)
√
p(G(χ) χ) +G(χ)(G(χ) χ).

As G(χ)G(χ) = χ(−1)p = ε(χ)2p, we obtain

Fp · v+(χ) = ε(χ)
√
p
(
G(χ) χ+ ε(χ)

√
p χ
)

= ε(χ)
√
p · v+(χ).

That is, v+(χ) is an eigenvector of Fp with eigenvalue ε(χ)
√
p. A similar calcula-

tion shows that v−(χ) is an eigenvector of Fp with eigenvalue −ε(χ)
√
p.

(ii) This is (15), and (16) as well, in the case when χ = σ.
(iii) We have

Fp · 1 = p10, Fp · 10 = 1.
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The latter relation simply reflects the fact that the first row of Fp consists of 1’s.
The former relation, a bit more interesting, owes to (1). We then have

Fp · v+(1) =
√
p Fp · 10 + Fp · 1 =

√
p 1 + p10 =

√
p v+(1),

and similarly Fp ·v−(1) = −√pv−(1). Obviously, v+(1) and v−(1) are non-zero,
so they are eigenvectors with corresponding eigenvalues√p and −√p. �

Let us tally up the eigenvectors we have obtained in Theorem 2.14. The starting
point is the basis for the complex-valued functions on F∗p, consisting of the p − 1
multiplicative characters of Fp. When extended to Fp, the multiplicative characters
remain independent; adding the function 10 yields a basis for the complex-valued
functions on Fp. The eigenvectors for the Fourier matrix Fp that we have obtained
are localized perturbations of the multiplicative characters of Fp.

The trivial character 1 contributes two eigenvectors, v+(1) and v−(1). The qua-
dratic character cuts a solitary figure: it is the only multiplicative character of Fp
that is an eigenvector for Fp. There are (p − 3)/2 doublets of conjugate, non-real
multiplicative characters {χ, χ}; each such doublet contributes two eigenvectors,
v+(χ) and v−(χ). The grand total is p distinct eigenvectors.

Theorem 2.15. The p eigenvectors of Fp, as described in Theorem 2.14, form an
orthogonal basis.

Proof. We set aside for a moment the eigenvector of Fp given by the quadratic
character. The remaining p−1 eigenvectors span the same 2-dimensional subspaces
as their seed vectors. Namely, v+(1) and v−(1) span the same plane as 1 and 10,
and for each doublet of conjugate, non-real multiplicative characters {χ, χ}, the
eigenvectors v+(χ) and v−(χ) span the same plane as χ and χ. Consequently, the
p eigenvectors are spanning, and so they form a basis.

Let us consider the orthogonality aspect. To begin with, the characters of the
multiplicative group F∗p are orthogonal; they remain so upon extending them to Fp.
The function 10, which we add so as to obtain a basis, is orthogonal to the non-
trivial multiplicative characters but not to the trivial character 1.

Much of this orthogonality is preserved when passing to the p eigenvectors ofFp.
The only pairs whose orthogonality is in question are v+(1) and v−(1), respectively
v+(χ) and v−(χ) for each non-real multiplicative character χ. We check these
directly:

〈v+(1), v−(1)〉 = 〈√p 10 + 1,−√p 10 + 1〉
= −p〈10, 10〉+ 〈1,1〉 = −p+ p = 0,

and
〈v+(χ), v−(χ)〉 =

〈
ε(χ)
√
p χ+G(χ) χ,−ε(χ)

√
p χ+G(χ) χ

〉
= −|ε(χ)|2p〈χ, χ〉+ |G(χ)|2〈χ, χ〉
= −p(p− 1) + p(p− 1) = 0.

Of course, the orthogonality of the p eigenvectors also implies that they form a
basis. �
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Example 2.16. It is quite instructive to pick a small prime p and to work out, very
explicitly, the eigen-picture of the Fourier matrix Fp that we have described above.
The reasonable choice is p = 5.

We first tabulate the characters of the multiplicative group F∗5. They are deter-
mined by their value on a chosen generator, say 2. Besides the trivial character 1
and the quadratic character σ, there is one doublet {χ, χ} of conjugate, non-real
multiplicative characters.

F∗5 1 σ χ χ

2 1 −1 i −i
4 1 1 −1 −1

3 1 −1 −i i

1 1 1 1 1

Next, we extend the multiplicative characters to F5, and we add the function 10

so as to obtain a basis for the complex-valued functions on F5.

F5 10 1 σ χ χ

0 1 1 0 0 0

1 0 1 1 1 1

2 0 1 −1 i −i
3 0 1 −1 −i i

4 0 1 1 −1 −1

As χ(−1) = −1, we have ε(χ) = i. So we can tabulate the eigenvectors of F5

provided by Theorem 2.14 as follows.

F5 v+(1) v−(1) σ v+(χ) v−(χ)

0
√

5 + 1 −
√

5 + 1 0 0 0

1 1 1 1 i
√

5 +G(χ) −i
√

5 +G(χ)

2 1 1 −1 −
√

5− iG(χ)
√

5− iG(χ)

3 1 1 −1
√

5 + iG(χ) −
√

5 + iG(χ)

4 1 1 1 −i
√

5−G(χ) i
√

5−G(χ)

We evaluate the Gauss sum associated to the character χ:
G(χ) = χ(1) ζ5 + χ(2) ζ2

5 + χ(3) ζ3
5 + χ(4) ζ4

5

= ζ5 + iζ2
5 − iζ3

5 − ζ4
5 = ζ5 − ζ5 + i

(
ζ2

5 − ζ2
5

)
= 2i sin

(2π

5

)
− 2 sin

(4π

5

)
= −

√
5−
√

5

2
+ i

√
5 +
√

5

2
.
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In the last step, we used the elementary evaluations

sin
(2π

5

)
=

√
5 +
√

5

8
, sin

(4π

5

)
=

√
5−
√

5

8
,

which are probably best derived from the simpler-looking evaluations

cos
(2π

5

)
=

√
5− 1

4
, cos

(4π

5

)
=
−
√

5− 1

4
.

Using the latter formulas, it is easy to evaluate the quadratic Gauss sum. The point
is that we do so directly, without an appeal to Theorem 2.11.

G(σ) = σ(1) ζ5 + σ(2) ζ2
5 + σ(3) ζ3

5 + σ(4) ζ4
5

= ζ5 − ζ2
5 − ζ3

5 + ζ4
5 = ζ5 + ζ5 −

(
ζ2

5 + ζ2
5

)
= 2 cos

(2π

5

)
− 2 cos

(4π

5

)
=
√

5.

The eigenvalues of F5 are ±ε(χ)
√

5 = ±i
√

5, G(σ) =
√

5, and then ±
√

5.

Another upshot of Theorem 2.14 is an alternate proof of Theorem 2.11. The
point is that we can get an explicit list of all eigenvalues of Fp, other than G(σ).
Recall that our original pathway to Theorem 2.11 was through Theorem 1.4.

Alternate proof of Theorem 2.11. From Theorem 2.14 we read off the following
eigenvalues of Fp: ±ε(χ)

√
p, each one with multiplicity (p − 3)/2, ±√p, and

G(σ). This is a complete listing of the eigenvalues of Fp, since the corresponding
eigenvectors form a basis. To get an explicit spectral picture, we need to understand
the distribution of ε(χ), as χ runs over the non-real multiplicative characters of
F∗p. Let n± denote the number of doublets {χ, χ} of conjugate, non-real characters
satisfying χ(−1) = χ(−1) = ±1. On the one hand,

n+ + n− =
p− 3

2
.

On the other hand, the summation formula∑
χ∈F̂∗p

χ(−1) = 0

yields the relation 1 + σ(−1) + 2n+ − 2n− = 0. We obtain

n+ =
p− σ(−1)− 4

4
, n− =

p+ σ(−1)− 2

4
.

In summary, the p eigenvalues of Fp are as follows: ±
√
p, each with multiplicity

1 + n+; ±i
√
p, each with multiplicity n−; and G(σ). Our aim is to show that

G(σ) =

{√
p if p ≡ 1 mod 4,

i
√
p if p ≡ 3 mod 4.
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To do so, we recall Lemma 1.6, which tells us that the determinant of Fp is a
positive multiple of (−i)(p−1)/2. Our present knowledge of the eigenvalues of Fp
allows us to compute

detFp = (
√
p)1+n+ · (−√p)1+n+ · (i√p)n− · (−i√p)n− ·G(σ)

= (−1)1+n++n− · i2n− · p1+n++n− ·G(σ)

= (−1)(p−1)/2 · i(p+σ(−1)−2)/2 · p(p−1)/2 ·G(σ)

=

{
i(p−1)/2 · p(p−1)/2 ·G(σ) if p ≡ 1 mod 4,

−i(p−3)/2 · p(p−1)/2 ·G(σ) if p ≡ 3 mod 4.

We deduce thatG(σ) is positive when p ≡ 1 mod 4, respectively a positive multiple
of i when p ≡ 3 mod 4. Since |G(σ)| =

√
p, thanks to (11), we conclude that

G(σ) =
√
p when p ≡ 1 mod 4, respectivelyG(σ) = i

√
p when p ≡ 3 mod 4. �

As soon as the value of the quadratic Gauss sum is known, the eigenvalues of
Fp–including their multiplicities–can be completely spelled out. We tabulate them
below.

p ≡ 1 mod 4:
eigenvalue √

p −√p i
√
p −i√p

multiplicity (p+ 3)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4

p ≡ 3 mod 4:
eigenvalue √

p −√p i
√
p −i√p

multiplicity (p+ 1)/4 (p+ 1)/4 (p+ 1)/4 (p− 3)/4

We have thereby obtained a different approach to the result of Theorem 1.4 in
the prime order case.

Notes. The alternate approach to the evaluation of the quadratic Gauss sum adapts
an argument due to Waterhouse [22]. It is worthwhile emphasizing that the follow-
ing two problems go hand in hand, and may be even construed as being equivalent:
(i) the determination of the eigenvalues (and their multiplicities) for the Fourier ma-
trix Fp, and (ii) the evaluation of the quadratic Gauss sumG(σ). Our first approach
was to solve (i), and then deduce (ii). In this section, we saw how (i) hinges on (ii).

Eigenbases of the Fourier matrix of order n have received quite a bit of attention;
see, for instance, [10, 13, 5, 7, 20, 11, 8]. There is a lot of freedom in building
eigenbases since the four eigenspaces have high dimension. For a generalization of
the character-based approach described herein, see Morton [13].

2.6. Incomplete character sum estimates: double sums. The following result is
an additive analogue of Application 1.3.
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Theorem 2.17. Let χ be a non-trivial multiplicative character of Fp, and let
A,B ⊆ Fp. Then∣∣∣∑

a∈A

∑
b∈B

χ(a+ b)
∣∣∣ ≤√p−1|A||B||Ac||Bc|.

We note that a simpler, but coarser, upper bound is
√
p|A||B|.

Somewhat surprisingly, the proof will make use of Gauss sums. Let us first de-
scribe a direct argument–not involving Gauss sums–that will yield a slightly weaker
upper bound. This argument bears a strong resemblance to the approach taken in
Application 1.3.

A weaker bound. We begin by estimating∣∣∣∑
a∈A

∑
b∈B

χ(a+ b)
∣∣∣2 ≤ |A|∑

a∈A

∣∣∣∑
b∈B

χ(a+ b)
∣∣∣2 ≤ |A|∑

a∈Fp

∣∣∣∑
b∈B

χ(a+ b)
∣∣∣2.

The first estimate is an application of the Cauchy-Schwarz inequality; in the sec-
ond estimate, we complete the outer sum. The point now is that the latter, half-
completed double sum can be evaluated as follows. We write∑

a∈Fp

∣∣∣∑
b∈B

χ(a+ b)
∣∣∣2 =

∑
a∈Fp

(∑
b∈B

χ(a+ b)
)(∑

b′∈B
χ(a+ b′)

)
=
∑
b,b′∈B

∑
a∈Fp

χ(a+ b)χ(a+ b′).

Thanks to Lemma 2.10, we know that the inner sum equals pJb = b′K−1. Therefore∑
b,b′∈B

∑
a∈Fp

χ(a+ b)χ(a+ b′) = p
∑
b,b′∈B

Jb = b′K−
∑
b,b′∈B

1 = p|B| − |B|2.

Overall, we obtain the bound∣∣∣∑
a∈A

∑
b∈B

χ(a+ b)
∣∣∣ ≤√|A|(p|B| − |B|2) =

√
|A||B|

(
p− |B|

)
.

Note, however, that A and B play symmetric roles; so the upper bound can be
improved to

√
|A||B|

(
p−max{|A|, |B|}

)
. This is better than the simple upper

bound
√
p|A||B|, but still weaker than the desired upper bound. �

As already mentioned, the better argument exploits Gauss sums.

Proof of Theorem 2.17. By (14), we have∑
a∈A

∑
b∈B

χ(a+ b) =
1

G(χ)

∑
c∈F∗p

χ(c)
∑
a∈A

∑
b∈B

ζ(a+b)c
p .
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We take absolute values; as χ is non-trivial, we have |G(χ)| = √p, and we deduce
that ∣∣∣∑

a∈A

∑
b∈B

χ(a+ b)
∣∣∣ ≤ 1
√
p

∑
c∈F∗p

∣∣∣∑
a∈A

∑
b∈B

ζ(a+b)c
p

∣∣∣.
The next step is bounding the inner double sum over A and B. Here, we are aided
by the fact that we can separate A from B. Indeed:∑

a∈A

∑
b∈B

ζ(a+b)c
p =

(∑
a∈A

ζacp

)(∑
b∈B

ζbcp

)
,

whence∑
c∈F∗p

∣∣∣∑
a∈A

∑
b∈B

ζ(a+b)c
p

∣∣∣ =
∑
c∈F∗p

∣∣∣∑
a∈A

ζacp

∣∣∣∣∣∣∑
b∈B

ζbcp

∣∣∣
≤
(∑
c∈F∗p

∣∣∣∑
a∈A

ζacp

∣∣∣2)1/2 (∑
c∈F∗p

∣∣∣∑
b∈B

ζbcp

∣∣∣2)1/2

by the Cauchy-Schwarz inequality. Now∑
c∈F∗p

∣∣∣∑
a∈A

ζacp

∣∣∣2 = p|A| − |A|2 = |A||Ac|

by applying (3); an analogous evaluation holds over B as well. Overall, we have∣∣∣∑
a∈A

∑
b∈B

χ(a+ b)
∣∣∣ ≤ 1
√
p

√
|A||Ac||B||Bc|

as desired. �

Application 2.18. Let A ⊆ Fp have the property that the difference between any
two distinct elements of A is a square in Fp. For example, {1, 4, 5} is such a set for
p = 13. We note that a necessary condition for the existence of such a set is that
−1 is a square in Fp, that is to say, p ≡ 1 mod 4.

We then have the following double sum involving the quadratic character:∑
a,b∈A

σ(a− b) =
∑
a∈A

(|A| − 1) = |A|(|A| − 1).

On the other, by applying Theorem 2.17 to the sets A and −A, we know that∣∣∣ ∑
a,b∈A

σ(a− b)
∣∣∣ ≤ 1
√
p
|A|(p− |A|).

Combining the two facts, we deduce that |A| ≤ √p.

Notes. Theorem 2.17 was first noted by Erdős and Shapiro [6], and then by Chung
[1] in the stronger form stated herein.

The bound |A| ≤ √p from Application 2.18 is probably folklore, as there are
many ways to obtain it. Can it be improved, possibly below the square-root bound?
This is a well-known problem in additive combinatorics; see, e.g., Croot - Lev [3,
Problem 2.8]. The best result known so far is the following modest improvement,
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recently proved by Hanson and Petridis [9]: |A| ≤
√
p/2 + 1. The conjectural

expectation, however, is that for each ε > 0 the bound |A| ≤ pε should hold for
large enough p.

2.7. Incomplete character sum estimates: the Pólya–Vinogradov inequality.
Let us say that a subset A ⊆ Fp is an arc of length m, where m < p, if it is of the
form A = {t, t+ 1, . . . , t+m− 1}.

Theorem 2.19. Let χ be a non-trivial multiplicative character of Fp. Then, for
any arc A ⊆ Fp, we have ∣∣∣∑

a∈A
χ(a)

∣∣∣ < √p log p.(17)

There are two points to be noticed about the upper bound in (17): firstly, it is very
close to being on the order of √p; secondly, it is independent of the arc’s length.
In keeping with the usage in number theory, the logarithm in (17) is the natural
logarithm with base e.

The proof of the bound (17) combines two ideas: that multiplicative characters
can be expressed in terms of the additive ones, by means of the formula (14), and
that the additive analogue of (17) can be handled rather easily by using the assump-
tion that A is an arc. The argument will also need a delightful exercise in calculus!

Proof. By using (14), we can write∑
a∈A

χ(a) =
1

G(χ)

∑
b∈F∗p

χ(b)
∑
a∈A

ζabp .

Taking absolute values, and keeping in mind that |G(χ)| = √p, we deduce that∣∣∣∑
a∈A

χ(a)
∣∣∣ ≤ 1
√
p

p−1∑
k=1

∣∣∣∑
a∈A

ζakp

∣∣∣.
Now we make use of the specific form of A. For each k ∈ {1, . . . , p − 1} we

have: ∑
a∈A

ζakp = ζtkp

m−1∑
j=0

ζjkp = ζtkp ·
1− ζmkp
1− ζkp

since ζkp 6= 1. Therefore∣∣∣∑
a∈A

ζakp

∣∣∣ =
|1− ζmkp |
|1− ζkp |

≤ 2

|1− ζkp |
=

1

sin(kπ/p)
.

Summarizing, we have shown that∣∣∣∑
a∈A

χ(a)
∣∣∣ ≤ 1
√
p

p−1∑
k=1

1

sin(kπ/p)
.
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We give an upper bound for the latter sum in a separate lemma, see below. The
lemma’s bound implies that∣∣∣∑

a∈A
χ(a)

∣∣∣ < 2
√
p

π
log

4p

π
.

It is a simple matter to verify that this bound is in fact better than the desired bound
(17), for any p ≥ 3. �

Lemma 2.20. We have
p−1∑
k=1

1

sin(kπ/p)
<

2p

π
log

4p

π
.

Proof. We start from the observation that the left-hand side resembles a Riemann
sum for the function f(x) = sin(πx)−1. Which brings us to the following general
fact: if f is a convex, continuous function on the interval (0, 1), then

1

p

p−1∑
k=1

f

(
k

p

)
≤
∫ 1−1/(2p)

1/(2p)
f(x) dx.

This can be seen by interpreting the left-hand side as the midpoint Riemann sum
over the partition 1/(2p) < 3/(2p) < · · · < (2p − 1)/(2p). Convexity implies
that such a midpoint Riemann sum underestimates the Riemann integral. Thus,
denoting ε = 1/(2p), we obtain

1

p

p−1∑
k=1

1

sin(kπ/p)
≤
∫ 1−ε

ε

1

sin(πx)
dx

=
1

π

∫ π(1−ε)

πε
cscx dx =

2

π

∫ π/2

πε
cscx dx

by a change of variable, and a use of symmetry. We now work out the definite
integral. Recall that log | cscx− cotx| is an antiderivative of csc(x); we write

cscx− cotx =
1− cosx

sinx
=

2 sin2(x/2)

2 sin(x/2) cos(x/2)
= tan(x/2).

We then get∫ π/2

πε
csc(x) dx = log

∣∣ tan(x/2)
∣∣ ∣∣∣∣π/2
πε

= log
1

tan(πε/2)
.

Next, we use the inequality tanx > x, valid for any x ∈ (0, π/2). We deduce that∫ π/2

πε
csc(x) dx < log

1

πε/2
= log

4p

π
.

The claimed bound follows. �
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Application 2.21. Just like Application 2.18, the most immediate use of the Pólya–
Vinogradov inequality pertains to the quadratic character:∣∣∣∑

a∈A
σ(a)

∣∣∣ < √p log p

for any arc A ⊆ Fp.
If we assume that each element of the arc A is a non-square, then we obtain

|A| < √p log p. We interpret this as a fact about the spacing of squares: any two
consecutive squares in Fp = {0, 1, . . . , p− 1} are at most √p log p apart.

A similar argument, this time assuming the arc A to consist of squares only,
shows that the same spacing bound holds for non-squares as well.

The next result puts the Pólya–Vinogradov inequality (17) into perspective. It
shows, in particular, that the main term in the upper bound,√p, is unavoidable.

Theorem 2.22. Givenm ∈ {1, . . . , p−1}, there exist positive constants cm, Cm
so that the following holds: for each non-trivial multiplicative character χ of Fp,
we have

cm
√
p ≤ E

∣∣∣∑
a∈A

χ(a)
∣∣∣ ≤ Cm√p

as A runs over the arcs of lengthm.

Proof. Put δ = m/p. There are p arcs of length m = δp, namely A(t) = {t, t +
1, . . . , t+m− 1} for each t ∈ Fp. The desired expected value is

E
∣∣∣∑
a∈A

χ(a)
∣∣∣ =

1

p

∑
t∈Fp

∣∣∣ ∑
a∈A(t)

χ(a)
∣∣∣.

The upper bound. This part bears some resemblance with Lemma 2.8. The main
ingredient here is the fact that, for any subset A ⊆ Fp, we have∑

t∈Fp

∣∣∣ ∑
a∈t+A

χ(a)
∣∣∣2 = |A||Ac|.

Indeed, we can expand∣∣∣ ∑
a∈t+A

χ(a)
∣∣∣2 =

∣∣∣∑
a∈A

χ(t+ a)
∣∣∣2 =

∑
a,b∈A

χ(t+ a)χ(t+ b).

Using Lemma 2.10 along the way, we compute∑
t∈Fp

∣∣∣ ∑
a∈t+A

χ(a)
∣∣∣2 =

∑
a,b∈A

∑
t∈Fp

χ(t+ a)χ(t+ b)

=
∑
a,b∈A

(
pJa = bK− 1

)
= p|A| − |A|2 = |A||Ac|.

In the case at hand, we take A = A(0), and so t+A = A(t). We deduce that

E
∣∣∣∑
a∈A

χ(a)
∣∣∣2 =

|A(0)||A(0)c|
p

= δ(1− δ)p.
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Using the inequality (E|f |)2 ≤ E|f |2, it follows that

E
∣∣∣∑
a∈A

χ(a)
∣∣∣ ≤√δ(1− δ)√p = Cm

√
p.

The lower bound. This part of the argument uses Gauss sums. Put

S =
∑
t∈Fp

( ∑
a∈A(t)

χ(a)
)
ζtp.

On the one hand,
|S| ≤

∑
t∈Fp

∣∣∣ ∑
a∈A(t)

χ(a)
∣∣∣

and so
|S|
p
≤ E

∣∣∣∑
a∈A

χ(a)
∣∣∣.

On the other hand, S admits a simple closed form. Indeed, we can write

S =
∑
t∈Fp

∑
a∈A(0)

χ(t+ a)ζtp =
∑

a∈A(0)

∑
t∈Fp

χ(t+ a)ζtp.

The change of variable t := t − a reveals that the inner sum equals G(χ)ζ−ap .
Therefore

S =
∑

a∈A(0)

G(χ)ζ−ap = G(χ)

m−1∑
j=0

ζ−jp = G(χ) ·
1− ζ−mp
1− ζ−1

p
.

Taking absolute values, we deduce that

|S| = √p ·
|1− ζmp |
|1− ζp|

=
√
p · sin(mπ/p)

sin(π/p)
.

We expect the latter fraction to have a lower estimate on the order of m. We note
that sinx < x for x > 0, and sinx > 2x/π for 0 < x ≤ π/2; the latter bound can
be checked by showing that (sinx)/x is decreasing on (0, π/2]. A combined use
of these bounds confirms our expectation:

sin(mπ/p)

sin(π/p)
>

2m/p

π/p
=

2m

π
.

In summary, we have shown that

|S| >
2m
√
p

π
=

2δ

π
p
√
p

and so
E
∣∣∣∑
a∈A

χ(a)
∣∣∣ ≥ |S|

p
>

2δ

π

√
p = cm

√
p.

This completes the proof. �

Notes. Theorem 2.19 is due, independently, to Pólya [16] and Vinogradov [21].
The proof presented herein is due to Schur [17]. Schur also proved what, in our
account, is the lower bound in Theorem 2.22.
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