How Many Knots Are There?
 It's knot so easy to show.

Nathaniel Cantwell
Department of Mathematics
IUPUI

Apr. 1, 2022

Outline

1. What is Knot Theory?

2. What is a Knot?
3. How Many Knots Are There?

Knot Theory

- Began in the 1880's as a theory by Lord Kelvin (William Thompson) that different substances were made up of small knotted vortices in the aether.

Knot Theory

- Began in the 1880's as a theory by Lord Kelvin (William Thompson) that different substances were made up of small knotted vortices in the aether.
- Gained mathematical intrigue even though the aether theory was proved to be wrong.

Knot Theory

- Began in the 1880's as a theory by Lord Kelvin (William Thompson) that different substances were made up of small knotted vortices in the aether.
- Gained mathematical intrigue even though the aether theory was proved to be wrong.
- Development continued steadily.

Knot Theory

- Began in the 1880's as a theory by Lord Kelvin (William Thompson) that different substances were made up of small knotted vortices in the aether.
- Gained mathematical intrigue even though the aether theory was proved to be wrong.
- Development continued steadily.
- Computers revolutionized the field.

Knot Theory

- Began in the 1880's as a theory by Lord Kelvin (William Thompson) that different substances were made up of small knotted vortices in the aether.
- Gained mathematical intrigue even though the aether theory was proved to be wrong.
- Development continued steadily.
- Computers revolutionized the field.
- Revolution: knotted DNA was discovered, and enzymes that untie that DNA.

Knot Theory

- Began in the 1880's as a theory by Lord Kelvin (William Thompson) that different substances were made up of small knotted vortices in the aether.
- Gained mathematical intrigue even though the aether theory was proved to be wrong.
- Development continued steadily.
- Computers revolutionized the field.
- Revolution: knotted DNA was discovered, and enzymes that untie that DNA.
- Knot theory is generally considered a more accessible sub-field of topology.

What is a knot?

Definition (idea)

A knot is a closed curve in \mathbb{R}^{3} with no self-intersections.
Intuition is stretchy, bendy string of zero width connected at the ends with no self-intersections.

What is a knot?

Definition (idea)

A knot is a closed curve in \mathbb{R}^{3} with no self-intersections.
Intuition is stretchy, bendy string of zero width connected at the ends with no self-intersections.

- Two knots are equivalent if one can be deformed to the other in a smooth, structure-preserving manner.

What is a knot?

Definition (idea)

A knot is a closed curve in \mathbb{R}^{3} with no self-intersections.
Intuition is stretchy, bendy string of zero width connected at the ends with no self-intersections.

- Two knots are equivalent if one can be deformed to the other in a smooth, structure-preserving manner.
- That is, a deformation where the curve does not pass through itself, and does not do anything physically impossible, such as tightening portions of the curve down to a single point.

The Unknot

The Trefoil and Figure Eight

The Trefoil

The Figure-Eight

Another Knot?

Another Knot?

Believe it or not, this is the Unknot.

Knot Projections

- A projection of a knot in the plane which is $1: 1$ except at a finite number of crossings, in which case it is $2: 1$ (that is, we do not allow two or more colinear crossings to " merge" together ambiguously).

Knot Projections

- A projection of a knot in the plane which is $1: 1$ except at a finite number of crossings, in which case it is $2: 1$ (that is, we do not allow two or more colinear crossings to " merge" together ambiguously).
- Knot projections preserve all information needed to determine the topology of the knot (if we draw the crossings appropriately).

Knot Projections

- A projection of a knot in the plane which is $1: 1$ except at a finite number of crossings, in which case it is $2: 1$ (that is, we do not allow two or more colinear crossings to " merge" together ambiguously).
- Knot projections preserve all information needed to determine the topology of the knot (if we draw the crossings appropriately).

A projection of the Trefoil

Tying and Untying Knots

- How do we show two knots are the same?
- Reidemeister moves provide a formal framework for manipulating knots.
- There are three types (plus three mirror-images).

Reidemeister Moves

Type I

Reidemeister Moves

Type I

Type II

Reidemeister Moves

Reidemeister Moves

Theorem

There is a sequence of Reidemeister moves taking one knot projection to another if and only if the knots are equivalent.

- This theorem takes some work to prove.
- Intuitively, it is clear these do not alter the structure of the knot.

How can we tell knots apart?

- Two knot projections are equivalent if there is a sequence of Reidemeister moves between one another.
- For two knots to be different, we have to show there is not a sequence of Reidemeister moves between them. This is much harder.
- E.g., can we deform the trefoil into the unknot. What if it can just takes $10,000,000$ Reidemeister moves? What about $10,000,001$?
- We need more tools to distinguish knots.

Knot Invariants

A knot invariant is a property of a knot projection that holds for all projections of that knot. That is, if we have two projections of a knot, K, namely $P_{1}(K)$ and $P_{2}(K)$, then a knot invariant is a property f such that

$$
f\left(P_{1}(K)\right)=f\left(P_{2}(K)\right)
$$

One such knot invariant is tri-colorability.
Note: This may be reminiscent of how to show that two complicated graphs are not isomorphic.

Tri-Colorability

We begin with the definition of a strand.

Definition

A strand is an unbroken segment in a knot projection.

One strand in the Trefoil

Tri-Colorability

Now, we define tri-colorability...

Definition

A crossing is said to be tri-colorable if each strand meeting at the crossing is either the same color, or each is a different color.

Moreover...

Definition

A knot is tri-colorable if each crossing is tri-colorable, and all three colors are used at least once.

A tri-colored crossing using one color

A tri-colored crossing using three colors

Proving tri-colorability is a knot invariant

We propose the following theorem:

Theorem

If two knot projections represent the same knot, then they are either both tri-colorable, or neither is tri-colorable.

Proof of Tri-Colorability Theorem

We know two projections represent the same knot if and only if there is a sequence of Reidemeister moves between them. What do we need to show?

Proof of Tri-Colorability Theorem

We know two projections represent the same knot if and only if there is a sequence of Reidemeister moves between them. What do we need to show?

- One knot projection is tri-colorable if and only if all others are.

Proof of Tri-Colorability Theorem

We know two projections represent the same knot if and only if there is a sequence of Reidemeister moves between them. What do we need to show?

- One knot projection is tri-colorable if and only if all others are.
- We must show tri-colorability is preserved under each Reidemeister move.

Proof of Tri-Colorability Theorem

We know two projections represent the same knot if and only if there is a sequence of Reidemeister moves between them. What do we need to show?

- One knot projection is tri-colorable if and only if all others are.
- We must show tri-colorability is preserved under each Reidemeister move.

The segment remains tri-colorable

How Many Knots Are There?

At least two: the trefoil and the unknot.

More on Knots

Certainly, there are more than two distinct knots.

The figure-eight is not tri-colorable.

More on Knots

Certainly, there are more than two distinct knots.

- How can we show this? Is the figure-eight equivalent to the unknot?

The figure-eight is not tri-colorable.

More on Knots

The figure-eight is not tri-colorable.

Certainly, there are more than two distinct knots.

- How can we show this? Is the figure-eight equivalent to the unknot?
- Knot composition; prime knots.

More on Knots

The figure-eight is not tri-colorable.

Certainly, there are more than two distinct knots.

- How can we show this? Is the figure-eight equivalent to the unknot?
- Knot composition; prime knots.
- How many (prime) knots are there of n crossings?

More on Knots

The figure-eight is not tri-colorable.

Certainly, there are more than two distinct knots.

- How can we show this? Is the figure-eight equivalent to the unknot?
- Knot composition; prime knots.
- How many (prime) knots are there of n crossings?
- Unsolved question: prove that there are more distinct prime knots of $n+1$ crossings than of n crossings.

The End

References

囦 Adams, Colin C. The knot book. An elementary introduction to the mathematical theory of knots. American Mathematical Society, Providence, RI, 2004. ISBN: 0-8218-3678-1
(Trefoil from https://en.wikipedia.org/wiki/File:Trefoil_knot_left.svg
围 Figure Eight from https://commons.wikimedia.org/wiki/File:
Figure8knot-rose-limacon-curve.svg
Ochai Unknot from
https://commons.wikimedia.org/wiki/File:Ochiai_unknot.svg
Reidemeister moves from https://en.wikipedia.org/wiki/Reidemeister_move

