(1) Let M be a smooth, compact n–dimensional manifold without boundary ($n > 0$) and let N be a smooth manifold (also without boundary). Assume that there exists a submersion $p: N \to \mathbb{R}$.

Prove that for each smooth function $f: M \to N$, there exist at least two distinct points $x, y \in M$ such that $T_xf: T_xM \to T_{f(x)}N$ and $T_yf: T_yM \to T_{f(y)}N$ are not surjective.

(2) Let M be a smooth manifold without boundary. Let X be a C^∞ vector field on M, and let $f, g: M \to \mathbb{R}$ be C^∞ functions.

a) State the definition of the Lie derivative $\mathcal{L}_X(g)$.

b) Prove, directly from your definition in part a), that if $\mathcal{L}_X(g) = 0$ then $\mathcal{L}_{fX}(g) = 0$ as well.

(3) (a) Prove that $H = \{(v, w) \in \mathbb{R}^n \times \mathbb{R}^n : \langle v, w \rangle = 1\}$ is a smooth manifold. Here $\langle v, w \rangle = v \cdot w$ is the standard inner product on \mathbb{R}^n.

(b) Is H transverse to the diagonal $\Delta = \{(v, v) \in \mathbb{R}^n \times \mathbb{R}^n\}$? Prove your answer.

(4) Consider the vector field $\frac{\partial}{\partial x_1}$ on \mathbb{R}^2. Let $\psi: S^2 \setminus \{N\} \to \mathbb{R}^2$ be the stereographic projection map

$$\psi(x, y, z) = \left(\frac{x}{1 - z}, \frac{y}{1 - z}\right)$$

(where $N = (0, 0, 1)$).

(a) Show that the vector field $V = \psi^\ast(\frac{\partial}{\partial x_1})$ extends to a smooth vector field X on the entire sphere S^2, with the property that $X_p = 0$ if and only if $p = N$.

(b) Let $\gamma: (-a, a) \to S^2$ be an integral curve of V. Show that γ extends to an integral curve defined on all of \mathbb{R}, and prove that

$$\lim_{t \to \infty} \gamma(t) = \lim_{t \to -\infty} \gamma(t) = N.$$

(5) Let X, Y, and Z be compact oriented k–dimensional manifolds without boundary, and consider smooth maps $f: X \to Y$ and $g: Y \to Z$.

Prove that

$$\deg(g \circ f) = \deg(g) \deg(f).$$

(6) Let A be a 2×2 matrix with real entries, and consider the 1–form ω_A on S^1 defined by $\omega_A(v) = \langle v, Ax \rangle$, where $v \in T_x(S^1) \subset \mathbb{R}^2$.

(a) Give a formula for $\int_{S^1} \omega$ in terms of the entries of A.

(b) Characterize those matrices A for which the form ω_A is closed but not exact.